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SECTION I

INTRODUCTION

Understanding the performance of high-power lasers requires
a model of the system response to external perturbations. In the
case of small perturbations about some equilibrium value the sys-
tem response can be characterized by a (frequency-dependent) trans-
fer function.

As the simplest example of such a transfer function, consider
the problem of relaxation oscillations in a conventional laser. The
system can be described by the following set of equations:

%% =c (g - g.)¢ (1)
99 _ _ $
rr % (1 + ¢s) + P (2)

where

$ = system flux

g = system gain/unit length
¢ = saturation flux

T = upper state deactivation time
c = speed of light
9. = cavity coupling

P = external pumping

Let us now assume steady-statce pumping with a small per-
turbation, i.e.,

P = Po + Pl, (3)
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where P, is the stcady-state component and Py is the perturbation.
Similarly, if

¢ = 0, *+ &y (4)
9 =9, %9, (5)
r =1+ ¢>o/¢>s (6)

we have the following equations (after Laplace transforming, de-
noted by ¢(s), etc.)

S - Cgo ¢1/¢O 0
. = (7)
r - r ~ ~
T s+t 7 9179, S
In this case
¢1/¢o s - cg, o »
= B % (8)
~ r - 1 ~ ~
gllgo s - % P Pl
The transfer function matrix, & !, is given by -
r
1 . s + ? cgo
S T 9o T T S

If any singularities occur with Real s > 0, the system has
an instability.

/@
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In this case, the roots occur at

g _(r-1)
s=——2T£tiV——°T————- (10)

L]

i.e., at a frequency

>g_(r-1)
_ o
R ()
with a damping factor of
I' = 2r/1 {(12)

and no instability obtains.

In this report we will show that a realistic transfer func-
tion for high-power lasers must include the acoustic, or thermo-
dynamic degrees of freedom as well. The reason for this inclusion
can be seen in schematic form in Figure 1.

Gain and flux perturbations lead to density perturbations
via local heating. This, in turn, causes refractive index fluc-
tuations and flux perturbations which close the cycle.

We will show below three separate examples of this expanded
approach to the system transfer function and system stability. The
first two deal with CO, EDLs, although the formalism can be gen-
eralized to other types of lasers. The third deals explicitly with
the chemical laser.

We shall see that when the thermodynamic degrees of freedom
are included, the possibility of a system instability exists. 1In
fact, such an instability has actually been found experimentally
in the case of a cw CO2 electron-discharge laser (EDL).

We shall now briefly outline the remainder of this report.
Section II contains a discussion of an instability arising from
the transfer of energy from an initially oscillating cavity mode
to a different transverse mode by an acoustic wave. The approach
to this problem is the solution of a perturbed propagator cqua-
tion, i.e., an integral equation for the change in the eclectro-
magnetic wave after a round-trip traversal of the acoustically
perturbed cavity. Two simplifying assumptions made in this

70
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section are that (a) the initially oscillating mode has a uni-
form transverse fluence distribution and (b} that both electro-
magnctic modes have the same natural frequency of oscillation,
It is shown that the oscillatory heating which occurs can result
in an unstable interaction between the two electromagnetic waves
and the acoustic wave, i.e., a perturbation whose amplitude in-
crecases exponentially.

In Section III we discuss a different type of instability:
alignment sensitivity. Variations in the gas density along the
flow direcction lead to both gain variations and slight changes in
the propagation direction of a light mode. Wec show that this can
result in extreme cavity alignment sensitivity.

In Sezcion IV we return to the mode-medium interaction
problem of Section II, which is now rcformulated in the language
of Brillouin scattering (differential treatment). We show the
equivalence of the differential and integral formulations of the
mode-medium interaction. We focus, however, on an alternative
instability mechanism. We show that an acoustic wave of fre-
quency wp tends to resonantly couple an initially oscillating
mode to a new transverse mode whose natural frequency is ofi-
set by w, from the natural frequency of the intial mode. This
is just the ordinary Brillouin effect. We derive equations of
motinn for the amplitude of the new mode and for the acoustic
wave. The secular equation for the system is derived. It is
shown to be unstable in the limit of negligible gain-flux oscil-
lations (that is, with a ratio of cavity flux to saturation flux
<< 1, so that gain saturation may be ignored). A brief discus-
sion is given of the nonlinear saturation of this process.

An idealization of the mode-medium interaction theory of
Sections II and IV is the implicit assumption that the net loss
(= loss minus gain) of two cavity modes may be very nearly equal.
(See Appendix A.) At the beginning of this program it was realized
that no self-consistent calcuiation of the eigenmodes of a loaded
{i.e., gain-saturated), unstable resonator of moderate Fresnel
number, such as a cw electron-discharge laser, existed. Such a
calculation, which clearly is quite relevant to this program, is
described for the first time in Section V. Using a new computa-
tional technique developed at AERL, we have solved for the sclf-
consistent eigenmodes of an unstable resonator whose gain is
saturated by the presence of a strong oscillating mode (the
"fundamental”" mode). We f£ind that the fluence distributions of
the various eigenmodes are modified by the saturation, and that
the cigcenvalues are shifted from their empty-resonator values.

In particular, the cmpty-resonator loss degencracy which eoxists
at certain half-integral values of Fresnel number disappears in
the presence of a saturated gain, i.c., different modes are found
to have different losses. This is a significant new result which

([ ®
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suggests that it is not advantageous to avoid half-integral values
of Fresnel numbers in the design of an unstable resonator which
will be operated in the saturated-gain redgime. From the point of
view of our program, the results of this section suggest that thoe

model of Sections II and 1V, which assumes that at least some modes

have nearly equal net loss, is somewhat simplistic. However, the
nonuniformity of the gas density has been neglected in this sec-
tion; it is possible that when the nonuniformity is taken into

account the net losses of several modes may ke very nearly equal.

In Section VI we extend our instability-theory techniques
to a relatively simple model of a supersonic chemical laser
{(HF/Dr') . The model corresponds to a onc-dimensicnal flowfield.
The fluid-mechanic, chemical and cptical coupling ecquations are
obtained and Laplace transformed. The stability of the system
1s studied by use of the Routh Criterion, which allows the sian
of the roots of a polynomial equation to be determined. Numerical
calculations for typical operating conditions of the model laser
show that it is stable. The important result of this model is
that it determines the transfer function of the system. The
transfer function can be used to predict the magnitude of the
laser response to any external perturbation.

Finally, in Appendix A, we discuss the acoustically per-
turbed optical resonator in a more rigorous fashion. Using the
integral-operator formalism, we dcrive the eguation satisfied
by the amplitudes of the various eigenmodes in the presence of
the acoustic perturbation. We reformulate, in the language of
quantum mechanical perturbation theory, the differcence between
the instability mechanisms discussed in Sections II and IV; both
follow from the present treatment. We suggest an alternative

-model to explain the experimentally observed flux modulation in

the electron-discharge laser: one in which only a single eigen-
mode oscillates, but an acoustic standirg wave both modulates the
cavity loss and is driven by nonuniform heating caused by the
nonuniformity of the eigenmode and changes of the cavity flux.

(2 ®
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SECTION 11I

A THREE-WAVE LASER INSTABILITY

A. INTRODUCTION

It has been known for some time(l) that high-power CO, cw
Electric Discharge Lasers (EDL) exhibit output instabilitics.
This is evidenced via a spontaneous oscillation of the output
flux usually resulting in full modulation.

An example of such behavior for a typical CO; cw EDL is
shown in Figure 2. To the left of point "a" the output is stable,
while to the right of point "b" the instability has alrecady built
up. PBetween "a" and "b" the output may be considered lincarly
unstable, and periodic in nature. This suggests the possible
success of a linearized model, with the (linear) instability
evidencing itself via an exponentially growing root of the char-
acteristic equation of the system,

Corroboration of such a model may be obtained by reviewing
interferograms of the laser taken with flux extraction (Figure 3).
Also shown is the laser output flux versus time with the points
corresponding to the three interferograms as indicated. We note
the presence of low amplitude density (or acoustic) standing waves
between anode and cathode where the instability in the output flux
is already evident. It is as if the laser werc being acoustically-
Q-switched.

Further evidence of an acoustic connection can be found in
the period of the output oscillations. Typical oscillations of a
gain-flux system, such as are found in relaxation of a gain-
switched spike, are of the order of a few microscconds. As can
be seen from Figures 2 and 3, the period of the oscillations 1is
of the order of 50 usec. For typical anode-cathode scraration
of about 5 cm, with an acoustic mode number ~ 5 (Cf. Figure 3},
the acoustic time is typically

(5 cm/5)
3 x 104 cm/sec

~ 35 usec

1. Yoder, M.J. and Ahouse, D.R., Appl. Phys. Lett., 27, 673 (1970).
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Figure 2. Evidence of Lincar Instability. The upper trace in the
top figure is the flux and the bottom is sustainer
‘ current. The first three mscc show a dec output where-
upon the flux begins to oscillate. At this point there
is a floating zecro level due to detector sensitivity.
The lower figures are expanded time scales at incipient
breakup of flux.
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INTERFEROGRAMS OF CW EDL CAVITY WITH FLUX EXTRACTION,; 20,000 fps
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Figure 3. Mach Zender Interferograms of the Flow. The output flux
trace is shown as the lower curve in the upper right with
positive downward. The flux is stable up to about 2 mscc
whereupon the Q-switching occurs. The three interfero-
grams are before, at, and after onset of full scale
oscillators. Each picture shows two exposures sceparated
by 25 usec. The large scale waves evident at 4.8 mscc
are a result of the oscillations and not the cause as
they do not appear ecarliecr. At 2 msec notice the
presence of a standing transverse wave of a few frinaen
and about 3 or 4 cycles. It is this wave that produces
the oscillations in the f{lux.

- JAVCO EVYERETT




In this section, we will describe a model of flux-gain-
acoustic (density) coupling which admits an instability and
derive an analytic expression for the unstable root in certain
limiting cases. A subsequent paper will present a more rigorous

formulation, comparison with experiment, and experimental methods
of removing the instability.

B. THE MODEL

A schematic model of the CO, CWEDL is shown in Figure 4.
The flow, ancde-cathode, and optical axis directions are along
the x, y, z axes, as shown in Figure 4.

The anode is below and the cathode above, the plane of the
paper. Furthermore, we take the plane z = 0 as lying midway be-
tween the mirrors. Assuming that the change of the medium is
negligible in a round trip photon time (2 L/c) we may write the
following integral equation for the complex amplitude

u(x, v, z =0, t0+_C-r)=

[ [l
/’Kop (X, X ’ Y; Y ’ Z

4

0, s, t,) u (Xf, y', z =0, to) dx'dy"
(13)

In Eq. (13) u represents the amplitude for either the left
or right going flux; the propagation operator Kop is a function
of the state of the medium; and s denotes the pagh taken by a ray
from (x', y', 2' = 0) to (x, y, z = 0). ‘

In the presence of small perturbations, we make the decompo-
sition

xop = xop (o) * Kop (1) (t) (14)

for the propagator and

u = exp {i(koz - mot)}[uo(x, y, z) 4 u(x, y, 2z, t)]  (15)

for the complex amplitude, where kg, wo are the wavenumber and

angular frequency of the light. both ug and u, are assumed to
vary slowly over a distance comparable to a wavelength., By defi-
nition of ug, Kop (o) and of what constitutes a laser mode we have

/6 ®
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Figure 4. A Schematic Description of the CO2 CWEDL
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2L
u, X, y, 2=0, t_+ 7;) =
(16)
]{Kop (o) (x, x', v, v'; z = 0) ug (x', y', z' = 0} dx’'dy’
Keeping terms to first order in Eg. (13) and using Egs. (14) - (16}

we have

2L 2L . 2L,y _ o
[u (t  + = ) + uy (to + 2 ﬂ exp {- 1wo(?;)} './;op (o) Yo dx'dy

) 1 1 1
+fKOp (1) Y% dx'dy +/Kop (o) Y1 dx'dy (17)

If 2Lwp/c = nm where n is an integer (i.e., we have a longitudinal
mode) then

2L ' o
ul(xl Y, z =0, t +-7) = fxl(to)uo dx'dy +jKO ul(to)dx dy
(18)

Expanding the left-hand side of Eg. (18) in a Taylor series, we
obtain

2L °
ul(x, Y, 2 =0, t)'+ = 9 z./.Kl Uy dx'dy' + J{Ko uy dx'dy'
(19)

Ju

2L 1 _ , o . , . o
-C— at - [[KO - G(X"X ) 6 (y Yy )] ul (x 'y Y, 2 = 0, to)dx dy

+ j{Kl (x, x'; v, v") u, dx'dy’ (20)

In physical terms the sccond term on the right-hand side of
Eq. (29) represents scattering "into" uj, wherecas the first term
is leakage "out of" uj;. If uj is an approximate eidgenmode of the
loaded resonator with eigenvalue close to unity, the first term
on the right-hand side will be seccond order and can be dropped.
We investigate the meaning of this condition in greater detail in

Appendix A. We have then
(f=

STAVEO EVERETT
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[

au1 c
St < 2L Kl(x; X', ¥, y') U, dx'dy' (21)

In most applications it is the flux perturbation which is
experimentally of interest and which couples to gain and density
perturbations in the medium. To obtain the flux ecquation corre-
sponding to Eq. (21) we multiply both sides by u.* and take the

o
real part of both sides. We obtain

i * * = .E_ * ' '
7t (uO up + U uy ) = 5L [uo Kl ug dx'dy' + c.c. (22)
We note that

2

2
u + (u_*u
o o

17
(23)

b = ¢_ + ¢1'= |uO + u

1!

*
o Tuguy ) + 0 (|u

1

so that

= * ‘ *
¢l u,*uq + ujuy (24)

We now assume that the lowest mode up is independent of
x,y (i.e., spatially uniform), so that up may be taken outside
the integral on the right hand side of Eq. (22). This will be
most valid for small equivalent Fresnel numbers, but is a
reasonable first approximation in any case.

30
ad 1 _ c ' .
Er Tl %[/Kl ax'ay’ + c.c.] (25)

As we have noted K; will be directly reclated to the perturbations
of the medium. We now turn to expressing Kj in terms of density
and gain perturbations.

Assuming the medium reacts slowly in a time 2L/c, the
propagator Kg, can be written in the form

KOP (x, Y: X'r Y'; z =20, s, t) =

(26)

. x'y
—%E cxXp {i 2%1/. n{x, v; x', y': t, z' = 0, s) d s}
X'IY' /q .
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Where the path is the line segmented geometric path from (x', y')
to (%x,y) and n is the complex refractive index. An illustration
for the typical points is given below in Figure 5.

For the unperturbed medium, we have, simply
(XIY)

_ i .2
Kop (o) = I\L exp { 1 f ng ds} (27)
(x',y")

Hence, 1if

(28)

- - - . 2n _
Kop (1) - Kop Kop (o) = Kop (o) [exp{l 5 fnl ds} 1]
(29)

For sufficiently small values of n; (less than one fringe dis-
piacement on an interferogram) we may expand the exponcential in
Eg. (29) to obtain

(x,y)
K ~ i &8 n ds] K (30)
op (1) A 1 op (o) ‘
(x',y") !

Substituting Eg. {30) into Eq. (25) there results for either the
left or right running flux

- (le) :
ad c¢ . ;
1 _ o 21i . . :
ot 2L A [[Kop (o); [ i1 ds&dx dy X
(x'y'") ‘
(31) !

(x,y)

- fKop* (o) ;f nl* ds dx'dy']
(x',y')
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Figure 5. TIllustrating the Propagator via which the Medium at
(x',y') on the Nth Pass Influecnces the Light Amplitude
at (x,y) on the (N + 1l)st Pass
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If the left and right flux arc equal, Eqg. (31) can be considered
as the equation for the total flux. The right-hand side of
Eg. (31) may be transformed by writing

(x,y)
J;op (x, x'; vy, y')/ﬁ nl(s, t) ds

(x',y")
(32)

E./;z(x, Yy x', y") ny (x', y', t) dx'dy'
(definition of K2)

If n; is assumed to be independent of z, then Ky will be a property
of the unperturbed laser (i.e., independent of nip). 5 we shall
see below, there exist excellent reasons for making this assump-
tion. Finally, writing

n, = n + i n (33)
1 lR lI
there results
3 cd
__1=___O___2_71 5 ¢ - * ' - ' t
5T 5T X L.J}hz K2 ) an dx'ady' ./}Kz + Kz*) n1I dx'dy
) (34)
We now define
i2n8q
', ] - - *
aR(x, x'; vy, y') = Yoo (K, K, *) (35)
aI(x, X'; oy, y') o= K, - Kz* (36)
220
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where fg is the Gladstone-Dale constant for the medium and . 4
1s the density of the gas mixture at one atmospherce prossurc.
Noting that, by definition

B n
n, = 91 (37)
R Da
and
21 _
3 nII = g, . , (38)

we have, finally

a¢1 —_ C¢O ) 1) 1 1 ) i
= (x, y, t) = 51, QR(X, x'; Y. ¥") 24 (x', y', t) dx'dy

+ -/;I(X’ X'; ve ¥') 94 (x', y', t) dx‘dyi} (39)

To appreciate the physical content of Eq. (39), we transform,

spatially as follows:

(a) In the y (anode~cathode) direction we take a finite
Fourier cosine transform.

(b) In the x direction we perform an exponential Fourier

transform. Since the steady-state flux, o, i1s nonzero only over

a finite region, we get convolutions. To {inescce this problem
we smooth in ky-space over a region 2/b, where b is the length
of the flow channel. That 1is, we define

K +1/b

_ 1 x ,

®1x T 378 J( ¢ (K dx (40)
K, ~1/b

We may now cast Eg. (39) in the form

dd)lm,k Cd’“o

dt T 2L Z (aRmm',}(K' PIm kK T o rke I ! 4D

mI 'KI

A3 ®
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E In Egs. (42) and (43) we have tacitly assumed
“Imm';00 dnmﬂ (44) ﬁ
since the main effect of a gain variation is to change the flux }
) in the same spatial manner. We note further that Eq. (42) is an
equation for the rate of change of the output flux and as such

We now postulate that one acoustic mode will be favorcd above all
others, and that this mode has no variation on a scale less than
b (in the flow direction) and has m = 7, say, in the y direction.
The reason fecr this assumption, as well as a prescription for
estimating 2, will be given below.

Equation (41) now becomes the pair of equations.

d¢

P
1 cd 1
0,0 _ ) £,0 n
at  ~ 2L [C‘R o T % 9 ] (42)
ol ,00 o 0,0

(where ZM is the medium thickness)

| WODNPRUE YA

d¢
12,0 c(bo 2,0

= o —2:2 4 20, g :\ (43)
dt 2L [R“,oo os MO,

AN

1%

&

e

a p z -g

(45)
Roz,oo 12,0

<

can be considered to be a time varying modulation of the cavity
coupling. Equation (40), on the other hand, describes the varia-
tion of the "2"th Fourier component of the flux distribution.

The following physical interpretation can be given to Eg. (40).
When the laser is turned on there will be some acoustic noise
(density fluctuations) between anode and cathode which can be
expanded in a Fourier series. Each acoustic mode constitutes ‘
a phase diffraction cgrating for the incident flux 15. In Appendix

B we will show that the following statements can be made about
the scattered light:

a. The acoustic gain nd optical modes will have a trans-
verse variation with period a/n, where "a" is the anode-cathode
separation, and n is given by

n2 = az/AL (46)

2f #

i

4

|
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b. A plane wave scattered by an acoustic wave will, after
one trip, produce a flux oscillation with the same transversc
wavelength as the original acoustic wave.

¢. The variation of the acoustic perturbation in the optical
propagation direction can be neglected.

Furthermore, we note that if we take ug as a constant for
the lowest mode, then the higher Fourier componcnts uj: (recall
12 = up* uj; + ug uyg*) are orthogonal to u, and it is reasonable
to assume that the higher-order modes are representable by sines
and consines to the same extent that the lowest order mode is
representable by a constant. This simple picture, incidentally,
allows us to make a recalistic estimate of the influence cocfficient
are%,00 (henceforth referred to as a) in Eg. (43).

Technically, the guantity a enters into the model equations
as the influence coefficient from a sinusoidal density variation on
one pass to a sinusoidal flux variation on the next pass of the
laser radiation.

The radiation diffracts through the standing acoustic wave,
which acts as a phase grating, and completes a round trip, rein-
forcing the density wave. Thus reinforcement arises by having
the perturbed radiation in the same physical shape (same spatial
Fourier component) as the density wave. The reinforcement is
accomplished via heating.

The perturbation in the amplitude of the scattered light
(due to diffraction) 1is

. ~ (eid

1 - 1) uo ~ 1 uoé (47)

Where uy is the incident amplitude and ¢ is the (sinusoidally,
spatially varying) change in the optical path. The change in the
flux, ¢, is given by

2
~ * * o~ = 4
Ady ~ ugtuy + uuy lu 178 ¢ 8 (48)
Hence, in one pass
A 278
LoLs g fo 0 (49)
¢, ) s

25 ®
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Where &4 is the optical length through the medium, fg is the
Gladstone-Dale constant, and p, is the density of the medium
at one atmosphere

The equation in which a enters is of the form

o o
1 ¢ ‘ 1¢
5t - 21 (g t a5 ¢ (50)

From this equation, the change in one pass due to a density per-
turbation is given by

AT .
Tt 12 (51)

A¢12 2L/c

¢O ¢O * DO

By comparing Egs. (49) and (51) we obtain

0
~__ 9 o m (52)

We now proceed to a consideration of the gain and heating

equations necessary to complete the model. The gain cquation for
the flowing co, medium is (¢g = saturation flux)
39 39y » - 9 - 99 :
(at TV A% T o i (3)

Where 1 is the effective deactivation time from the upper lasing
level of the COp molecule, including the effects of the nitrogen
in the gas mix, and P is the pumping.

Once again, we consider the perturbed form of Eq. (53)

(v is the mean flow velocity)

igl + v 3?1 ~ - gl - 91% - 9% (54)
t ox T 1 I¢S ¢

The effect of the flowing term is ‘- lamp the growth of any per-
turbations with a damping time of t.ac order of the convection
time through the cavity. This is of the order of b/v where b 1s
the beam dimension in the direction of flow. Hence, Eq. (54)

becomes
2{;0
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891 o rg, ) Vg, ) go(r—l) E!‘ (55)
ot T b 1 ¢
o
¢o
Where r = 1 + —
¢s
The 2th component of Eq. (55) will be of the form
91, v L VI A Y 56)
5t b 912 = T T be (

To complete the coupled set of cquations we use the fact that
perturbations in the gain and flux amount to a pecrturbation in
the heating profile in the medium. This, in turn, will affect
the density perturabations, completing the loop.

The acoustic equations for a flowing medium and non-
isentropic flow can be obtained from the equations of momentum,
continuity, and from the first law of thermodynamics. In
Appendix C we show that the heating equation 1s of the form

2
9 9 d 9 2.2 _ . -2
<‘§€ + v 3’;) <<_3—€ + v -§‘§> - CS v )pl = (y~1) V Pl (57)

Where P; is the perturbation in the power per unit volume given
by

\Y

=2 g0 (58)

Vi
P1 =Y (go¢1 + gl¢o) * V s

where vV E vy - Vg, (59)
and vj3, v; represent the upper and lower frequencies of the lasing

transition. Combining Egs. (57) - (59) with the prescription (Cf.
Appendix C),

~

(60)

Ul<

3.
vV oSx

(where b is the dimension of the beam in the direction of the
flow) we obtain

27 @
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1 3
(Y-l) v [‘\‘)" (go¢’l + gl¢0) + _‘\)_' gl(t)s]

For the f£th component we have

Where "a" is the anode-cathode spacing. Hence,

2 2
d v 3 v 2 [in
(3{*'5) [(E;‘E*B) - Cs (’a—) ]Dlz
\Y

ar\? | V1 3
= b=4) (?) T 19001 91 T T et

(61)

(62)

(63)

Equations (43), (56), and (63) constitute one set of coupled
equations. To find the normal modes of the system we use Laplace

transforms of our variables pll' gl2 and ¢l£

~ ~ -St
(o]

etc. This allows us to make the replacement

3 ~
3¢ ¢1(t) > S ¢, (8), etc.

In matrix form our coupled equations become

¢1£/¢o

AL 9y/9, | =0

pli/po

20 ®

(64)

(65)

(66)
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Where

!
N’O
e
. -/

>

r-1
1

2 v, g ¢
L 1 “o0’0
‘Y’”(?) v

w

+
Al

+
o<

(67) /7

Equation (66) contains both the normal modes and the instability
criteria for the system. The normal modes can be found from the
secular equation

A (s)| =0 (68)

Equation (68) can be rewritten in the form v

i
5 L
n = !
E Yo s =0 {69) |
n=0 1
where Yy _ are functions of the system paramcters. The roots of

Egs. (63) and (69) arc the normal modes. An instability obtains
if one of the roots has a real part greater than zero. The con-
dition that no root has a real part greater than zero can be
formulated as a condition on the coefficients v, (the Routh-
Hurwitz conditions). We now proceed to a determination of the
stability boundary (Eg. (98)).

C. STABILITY BOUNDARY

Equations (67) - (69) yicld the following values for Yt

2 g ¢
_ 2 2 2 2, _ c« _ im 0’0
Yo = SylSp™ + Spa ) (Sy7 + Spg) -~ 5 (v - 1) <1> o o)

=

t .
f
1
i
1 ]
. |
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_ 2 2 2 2 2 2 2 2
= +
Yp = (Sp F Spa )l (SpT 4 Sppt) 4 Z‘SV[SA(SB * Spe )t Sp (57 * Sy )}
2 v g %
co Ln 1 o'o
+ 57 1)(;) < (71)
o
i
_ 2 2 2 2 2 2 2 2
= § (S + +
Y2 T Sy(Sy + SpT o+ Spp” 4 Sppt) 4 Z[SA(SB * Spp )t Sp(SyT * Spn ’]
(72) .
_ 2 2 2 2
y3 = 28 (SA + SB) + SA + SB + SRA + SRB (73)
Yq = S+ 2(SA + SB) (74)
Yg = 1 (75)
In Egs. (70) - (75), S, represents the acoustic damping and is
given by
=V
Sy = § (76)
where b is the length of the beam in the direction of the flow
channel, Sp, Sgrp represents the damping component and the fre-
qguency of the (unperturbed) acoustic root and are given by
= 3
SA =5 (77)
L
SRA = CS (7;> (78)
Sps Sgpp represent the damping comparent and the ... ¢l the
(unperturbed) gain-flux (relaxation « - "I.icrch) mode and are
aivcen by
Sg = r/2x (r = 1 + ¢O/¢S) (79)
(r—l)cqo 1/2
SRB = - _‘__ (80)

e |
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The Routh-Hurwitz conditions require that for stability the
following conditions obtain:

Y. >0 {n = 1...95) (81)

> 0 (82)
Yq
2 4 \YaY3 = YyYg

> 0 (84)

v (Y _ 12_1)
o - YoYs) _ 0y 3 \
T 1
2 \vg¥3 T ovyYs) A
To make the algebra tractable we take the leading terms in

E£gs. (70) -~ (75). In determining the leading terms, we note tnat
for typical systems

Sps. >> Spa >> 5,7/ S (85)
Then we take
2 P
Yo = S, Spa sRB2 - 2 (86)
Y s 2§ 24 ,52g 2, 1 (87)
1™ “RA RB v RB v

Y, 35 S 2 (88)

2 v “RB

2
Yy = SRB (89)
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Y4 = 3Sv + 2SB (90)
Yg = 1 (91)
where
co Ui 2 gofyo
P = ?I—: (y - 1) <—£_1_) ; (92)
o
Now Eg. (84) 1s equivalent to the condition
y 2 2, 2 o v - .., 2.3
; (93)
Inserting Egs. 86) - (91} in Eq. (93) and usiny the con-
ditions of Eq. (85} we obtain, after some tedious algebra,
2Pa S, S 4 \ l
2 6 ~ "B _"RB 1 o
' \JSV + 2SB) 4SV SB SRA SRB + ; (1 + 3 5 SVI)s 0
{
(94)
Or, if a < 0,
2 2
2(s. 1) s S
Plaf <« —L—RA KB (95)
1
1 + 3(Sv1) o
The Egs. (81) - (83) arc trivially satisf{ied except for the con-

dition that Yo > 0. If a > 0, this imposes the conaition that

2 2
< o Q)
Pu (Svl) SRA SRB (96)
Combining Egs. (95) and {96), we have
2 2 c 2 . 2
-2 Sv1 SRA SRB Sv1 YRAOTER
e e I R e (97)
P Vl P
} + 35 1 —
v v
as our stability criterion.
320
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(b) . .3
OA 2

. e—_t .

Utilizing the definitions contained in Egs. (76) - (80)
and Eq. (92), we have, alternatively
278 ¢ 4
- 2 iﬁ 2L v i < A 2 59 p“m(\(—l)< ¢ %% ’ éL
LTS (U e S 41 a S S |
v b
(98)
where
6. = p_C.O (99)
A~ Povs
D. DISCUSSION
Equation (98) can be put in a more useful form. We note
that
PO 2
b = ven (%)
S SA pA
_ p
T = 1, A (101)
Po
o
= _©
¢A = ¢AA o (102)
A
Where Tp, YSA &AA denote the values of 1, !q, ‘A at a pressure
of onc atmosphere. For a value of «, < 0 (for which the left side
of the inequality of Eg. (98) obtains) the limiting valuce of .O/A\,
¢

which we denote by (pg/pp) cr will be given by

\ 5
Y1V 1 (2 Vo), 8 an 1
v b 2 v b I

m

cr
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Let us consider a typical system with the following
paramters

= -3
P = 0.6 kg m

v/CS 0.5

L/, 2
¢, = 1.6 x 108 w/m?
A = 107 m (105)

0.5

—_
-
1
—
—
i

g - 1.7 x 107%

C = 360 m/secc

b = 7 cm

-5
T = 10 secc
o

Under these conditions the maxinmum allowable dencity

(pressurec) 1is given by Eq. (103) as (» /+v,) = 0.38.
o A cCr

It is interesting to note that Eg. (98) does not contain

the {lux explicitly and i1s thus indevrendent of the level of

pumping. We must oc careful, however, to notoe that i, (98)

holds only in Eg. (85) holds. This implies a conditiron on the

flux exceeding sone minimun amount.  Alco, Pua. (9%) arssumes thoe

substitution of Eqgs. (86) - (91) for Egs. (70) - (75). 1f the

latter are used, {5 will enter the stability condition explicitly.

The linecar instability, if it exists, will as we have scoen,
involve an expyonentially arowinag acoustic wave. Thie wire nood

hoave ol RN N T N N SOY .

ave ot Y AT s vt A Tavr s sl -

We mav see ehis caaLttat oty o Tron T Ul o -
Will ¢onmd o B Sl s by funvevae ) N

v

they have a small darpined tine coinparod to the daln-ilud o
{(i.e., Sy << SB)' Hence,

241,
I A - P B . 0
it il Spa (s(d> 1. (1ne)
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and

¢ P

12 a 1 C 18
N - . ., = 29 g 4 -————> (107)
¢O 2L Ln CS ( m-12 Do

and the amp%ification can be quite significant (in practice
~ 103 - 104).

Equation {98) suggests difficulties in trving to run a
high-powered CO2 EDL in a cw mode. A solution suggested by this
analysis is to damp the acoustic mode further by means of an

acoustic absorber: for example, an acoustic muffler on the cathode.

This has been tried and found to be successful. (Z2,3) In a
subsequent paper we will investigate the effects of an acoustic
absorber, as well as more realistic Kinetics and compare our
results with experiments undertaken at AERL.

2. Kellen, P.F., Mattson, A.C., Ahousc, D.R., and Yoder, M.J.,
Optical Engincering 18, 340 (1979}).

3. Korff, D., Glickler, S.1,., and Dauiherty, J.D., "Acoustic
Instability Model for Hiqgh Power ow EDL Laccors,: 30th Annual
Gascous Electronics Conference, Palo Alto, Cal., Oct. 18-24,
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SECTION III

ALIGNMENT SENSITIVITY

In the previous section we have ianored cain variations in
the direction of flow. Such variations can lead to extreme alian-
ment sensitivities, as we shall now show.

There are two effects involved. The first i1s the variation
of output coupling with position of the cptical axis on the feced-
back mirror. This is basically a diffraction effcct(4) and 1is
illustrated in Figure 6.

In F'igure 6 Neg 1s the system cquivalent Fresnel number,
defined by

wihere a i1s the collimating mirror diamoter, ™ is th
magnificaticn, and the other synbels have boen ouplal §
¢ 1s defined as the normalized positicon (one dimensiconal) of the
optical axis on the fcedback mirror (¢ = + 1, 0, - 1 correspond
to top, middle and bottom of the mirror, respectively).

The seccond effect is the variation of the system cain with
position of the optical axis. This effect arises because of the
variation of the cain with temperature for a particular valuce of
J, the initial ancular momentun of the radiating molecule.,  This
variation arises thrcough the partition functicon. In fact,

. 23 + 1 -BJ(J + 1)/T
gain ~ =—x—= ¢

where B is the vibrational constant for the transition and T is
the temperature.

Our flux cquation (for the variation of the total flux,
not a Fourier component) 1is (x is the flow divection, and = = 0
is the optical axis)

ad qg b
1 _ .. L
St T S0 9y 7 oap o) (110)

4. FKellen, P. and €mith, M., Opt. ¥na., 18, pp. 157-160

(March/April 1979).
SC:,
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where uj, proportional to the tilt angle, is defined by

n

i

_E_ (x) |
M1 = 3% 71 x =0

(111)

m

o dimensionless coupling constant

1
We shall derive a; below.
The gain equation along the optical axis (or the average

system gain across the beam, which can be shown to the equivalent)
satisfices the equation

2 _ g [%h 9t | ag 4 112)
ot T T¢S aul dt

In Eq. (112) the last term on the right-hand side repre-
sents the effect of the gain variation with optical axis position.
We rewrite Eq. (112) in the form

99, (g8 + 979,) epbag iy

—_ = -9 + S (113)
3t T T¢S °6 It
where ap is a dimensionless constant whose valuc will be found 1
below.
The heating equation takes the form
2 2 5, 2 _ _ 2
dp (B¢7 = C 7 3,7 oy (x) = (y - 1) 378(xi (g o; + gy¢,) (114)

Where f (%) denotes the variation in gain alonyg the flow direction
(go and g; are assumed to have the same spatial dependcnce). The
equation for ui (= p1' (0)) then becomes

2 2 2 3
- 3 ' = - . R

3, (3, Cs™ 3. my ) Lg = (v = 1) 3.7 Ex) | _ g o) + api)
(115) ;

where the prime denotes derivatives with respect to x. 1

Henceforth, we take

2 . ~ 1
[ax Py )] _ é]~ ! (116)

3]0
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to simplify the analysis. If a standing wave exists in the flow
channel (analogous to an open-ended organ pipe) then Bg. (116)
follows naturally. In any event, 1t serves as a reasonable ap-
proximation. Similarly we take

3 -
(v = 1) 9, f(X)lX =0 - 3 r - 1) (117)

i oo ey —

where a3 is derived below.

Our three coupled equation for this case are given by

¢, (s)
Al gy (s) ] =0 (118)
uy (s)
¢q .
where (r = 1 + T and v 1is the gas flow velocity) :
S :
alb
nes " “Iofo 5
|
g bg
o) v r o
2 _ S + — + = - — ,S (119)
I' Thg b T o 2
a,g a Cc 2
3”0 3 v v, 2 s
(y = 1) — ¢ (y - 1) - (s + 1) ((s+—) +——>
b3 b3 o b b b2

A Routh-Hurwitz stability criterion, using leading-order terms
as in the previous chapter, leads to the stability requirement

)
A 2 1
(y - 1) a,a, < — -t (120)
173 ¢s Tc ngo
where
_ 3 _ b
¢A = OOCS and Tc =y (121)

We shall now derive expressions for ay and sy (which, as
we shall see, is ~ aj).

M
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To determine .1} we must relate changes in ¢ to changes in
p' (x = 0). We have

21
T Peite

pol

P~

_ 2
=3 B L (122)

Ao
gpa'xM

~

where ¢y 1s the thickness of the optical medium and !tjlt is the tilt
of a ray duec to refraction. The optical axis will then tilt by

2M

M=o

8 (123)

tilt
Furthermore,

d;
— bc = R MY (124)

where dy ., Ry are the diamecter and radius of curvature of the
fecedback mirror, respectively. Hence,

2R
= L, 2N . . b0l (0)
Ae G, -1 By * Iy o (125)

Now, let us denote the change in ge wWhen ¢ changes by (l/Neq) as
Ngo. Then,

_ Ag
Ag Ae Ae
= (ngo) Neq Ae
2R R (126)
= . .___.l. . . __2~M____ . _g . !
M9y} Neg ] MM -1 T bp'(0)
a
ay9 b
= ——2 40" (0)
o
Therefore,
= __‘L‘[ ; ﬁ —QJ_,‘ - ‘_)9_ (127)
| "NeqM-1TD d, 'g fa

R
~ _ . 1 _ 20 = 200
n=2O0.1, NCq = 10, M = 2, B 0q
0 g
——9- = o = —4 __.rti. = _]_._n,l__ - 0
- 0.1, #,=2x107", a, “ 2em 50
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so that
al oo
|
We note, furthermore that aj will be much less than its '
calculated value if the system is aligned at, e.a., points A or
A' in Figure 6. (The calculation in Egs. (126) and (127) is

for point B in that figure.)

We may schematically denote the variation of system gain
with optical axis by the diagram in Figure 7.

E R BB B B

An analysis identical to that above leads to

Tt o (128)
eq M -1 b d1 g I

—_ t

Now, a) arises from the temperature variation of the gain
as given in Eqg. (109).

Taking

we obtain

for a typical case.

Since aj, a3 are both dimensionless constants due to the
same cffect we take them to be equal. We then obtain the follow-
ing stability boundary.

3
. )2 [ 4MR1QM ]2 : 2 <() ) 2 ) 2nOCS . 1 1 (129)
eq (M - 1)bd1 g a ¢S ngo T

0

|

?

©

For a numerical example, take

M =2 R1 = 20 m b =10 c¢m
n=20.1 n' = 0.05 RM = 1m
pg/0, = 0.1 d, =2 cm By = 2 % 1074
g, = 0.5 n 1 Cy = 300 m/scc T, = 10 3 sec
ooCs3/Oo =20 eqg =1

LAY e
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Figure 7.

Schematic Picture of System Gain Variation with
Optical Axis Position
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In such a case, we have
32 . 2 (unstable)
5% 3 (unstable

An instability in this system would result in large wander-
ings or the peointing angle and possibly to line jumping if the
optical axis moved sufficiently far so that the gain were grceater
for a different J number.

Even in the absence of an instability, of course, the
matrix A determines the system response to external perturbations.
In particular, if we have mirror vibrations (ae perturbation) the
coupling cnsures that we would obtain a response at the acoustic
frequencies. Such a response would not obtain in standard treat-
ments.

Finally, we stress that if the svstem is aligned at a

stable point (A or A' in Figure 6) no instability cobtains. 1]
(or n) is negligable and Eq. (129) is automatically satisfied.
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SECTION 1V

MODE MEDIUM INTERACTIONS: DIFFERENTIAL FORMULATION

A. INTRODUCTION

The analysis in this section will deal mainly with an attenmpt
to recast the instability discussed in Scction II in terms of more
conventional medium instabilities such as are found in plasna
phyvsics. Some of these, such as the free electron laser, harmonic
generation, and optical modulation by sound waves are beneficial.
Others, like thermal blooming, self-focusing and mode-medium
interaction (MMI) are deleterious,

The analysis in the previous two sections emphasized the
Huygens-Fresnel-Kirchhoff integral solution to the wave cguation. B
In this section, instead, the differential cquations will be ‘
analyzed and comparison with the other derivation will be made
along the way. The differential formulation has the advantaage
that it can be ecasily extended into the nonlinecar regime, in which
the amplitude of the perturbation has built up to a large value.

It also has the advantage that it demonstrates how the instability
discussed in Section II (hereafter referred to as !M™MI-1) is related
to more conventional instabilities. To do this, Maxwell's equations
including a time-varying conductivity (to account for cavity and
medium losses) and a time-varying dielectric function will be used.
It will be seecn that MMI-1 results when the conductivity is modulated
and when all the electromagnetic waves have the same unperturbed
frequency. This ic a form of nonresonant amplitude modulation and
instability, which is different from the conventional method of ‘
amplitude modulation in which resonant coupling of electromagnetic

modes which are scparted by the modulation frequency occurs.  On

the other hand, Brillouin scattering, which is primarily a phase

modulation, results when the dielectric function is modulated.

The coupling is strongest when the electromaanctic modes are

separated by the modulation frequency. This is the mechanism that f
will be studiced in this section. The equations of motion for the X
electromagnetic and acoustic waves are derived.,  The socular

determinant is solved. 1t is shown to have unstable rents in the

limit in which the ratio of cavity flux to the saturation flux is

small, so that gain-flux oscillations can bo neglected. Finally,

the nonlincar regime is briefly examined.

B. MODE-MIEDIUM IHNTERACTIONS

Qur starting point will be Maxwell's cquations with the
appropriate boundary conditions (cavity losses) and moediur aain

o
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and losses. Since the laser is in an unstable-resonator config-
uration, the boundary conditions are rather complicated (sce
Appcendix D). Thus to simplify matters, we will lump all the losscs
in a phenomcnological conductivity function. The medium gain will
be computed semiclassically from the imaginary part of the suscep-
tibility. A simple model of this is discussed in Appendix E.

Thus, the governing equations are, in mks units,

V«B=20 {131)
_ ?
VX E-= g‘g (132)
_ aD
VxH=J+ T (133)
where D = ¢E, J = oE, e contains the effects of dielectric pnlari-
zation and o contains both the medium losses and the cavity loss.
From Egs. (130) - (133) the fcllowing wave equation can be derived
for transverse electromagnetic waves:
2
2 3°D _ aJ
VB - Yao— = HYaeo (134)
08t2 03t
(uo is the free-space permeability). Assume that
e =0 + W (r,0 (135)
o = 0(0)(r) + 0(1)(r.t) (136)

The entire scattering calculation can actually be donc in terms of
o or ¢. The only reason for keeping both is to stick to the con-
vention which associates the gain of the system with the imaginary
part of ¢ and the losscs with the real part of -. Similarly,

scattering is associated with the real part of + and not the
imaginary part of ¢ even though formally (with the proyer inter-
pretation) it can be calculated in terms of either function. 1In

what follows we maintain the convention. Substituting Eqgs. (135) =
(137) into Eq. (134) lecads to,

2 2
2., {0) I o (0) HE 3 (1) .
V°E - lu,& (r)y-—- - uy_o e T s € (r,t)E - .7 (1),
0 8t2 0 at Oat2 Oét o (r,t)

(137)
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This equation will now be solved in a perturbative fachion
However rather than expanding in normal modes, woe will use the
multiple-time-scale expansion of secular ecquaticons, (6) Dupanding

E =0 + (1) + £(2), realizing that E(0) © 0 since there is no
steady-state space-charge field, leads to

~2-(1) npe (1)
viell) oy ((@37E T (e (138)
0 ny 2 0 ot
ot
025 _ 0% Lemas'? A%y o
0 atz 0 ot o,tz 0t

(139)

If s(l) and o(l) in turn depend on the clectric fields, then third

and higher-order equations will result. Equation (138) describes
the equilibrium eigenmodes of a loaded resonator including all the
losses. This equation for the unstable-resonator aoonectry 1s
discussed in Appendix D and in more detail in another ot of ¢
teport.  The normal modes of E(2) are the same as those for (1)
(since the left-hand sides of the equations are identical).
However, since E(2) is driven by products of first-order gquant it ics
it is conceivable that the left-hand side is driven at a natural
frequency. If this should happen to be the case then our portur-
bation expansion will break down. The reason is that B(2) contai:.:
a sccular response which will make £(2) » (1), g0 got arcund thig
problem those components of the right-hand sicde of 1(2) are incor-
porated into the equation for E(1), which is now allow:d tn have

a slowly varying amplitude. First the eluenmeodes of La. (138) have
to be found. Towards this cnd let,

(1) —imkt+ikz

eV (r,t) = e, e F cec (140)

(1)

where c+c stands for complex conjugatce and Py

saticfions,

5. A. Yariv, Quuntum BElectronics, John Wiley & Sons, N7 (1967)

6. N. Krylov, N.N. Intro,
Princeton U. Press, Princeton, NJ (1947)

Bogoliubov, Intro, to Yonlinear Mechanics,
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2 LoD 2\, (1) -
(vT + 21r\82 + ko >Lk {(r) = 0 (141)
where
2 (0)
. j 2.2 (0) g
2 _ % kK“c” g ¢
kO = —5 1 3 apolMg *+ 155 i— (142)
c w
k
(0) (0) oy : : - ' 5
g » 9 are the equilibrium gain and loss terms. The loss

includces medium and output-coupling losses; it is related to
o (0) by, gc(o) = uoo(o)(r)uk/k. The relationship between the
dielectric function and the medium susceptibility is given in
Appendix E. The dipole moment per molecule, agiven by

p = («E + c.c), results in a macroscopic polarization P = Npp.
Finally, since D(1) = ¢(0}p(1) = ¢op(l) + p, we find that in our
simple semi-classical picture ¢(0) = ro(l + rotg - 1ia(0) /K.

The equation for the equilibrium gain is given by

0 (0).(0)
g .ogOyO gy g Ty (143)
T ¢
s
where V(O) is the equilibrium flow velocity of the gas, : 1s the

collisional deactivation time of the upper state and P is the
pumping rate. The solution to Fgs. (142) and (143) constitutes
the equilibrium eigenmodes of the resonator, since the reosonator
boundary is included in <{(0). The details are given in Ay oendix
D. Any perturbation in the equilibrium ficlds can be cxpyanded in
the complete orthonormal sct of ecigonfunctions (which are assured
to exist). However, since a sccular response is anticipate:d, the
Fourier coecfficients will bhe assumed to be time dependent and the
appropriate set of equations describing the time cevolution of the
coefficients will now be derived. That is, let

< (l) '-imkt+ik2

E(r,t) = 2. up(t)Ey (r)e (144)
X 3 4

and substitute this into I, (137), keepinag in mind that e (t) g

slowly varying and by (1) satisfies ta, (141).  The pertorlotion

expansion in Egs. (138) and (139) thus is rodoane to take into

account anticipated secularity in the response of B(2),  Asnsume

also that

(1) —1wyt~+1kz

(h) (rje F (145)

€ (r,t) = Z:a‘(t
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-1, t+1ikz
-~ 1 .
Mo = e -, Pime K (146)
K K
k
. (1) , . oy, . - s - S
where (r) and "k (r) are the approjriate spatial, dielectric
and loss-modulation ¢igenfunctions to be doternined self-conris-
tently.  Note that in Fgs. (144) - (146) ¥ is a sumnmation indi o

there is no implication that the k's are the same in these caua-
tions. Substituting Egs. (144) - (146) into BEg. (137) yields,

-iw, t+ikz 21w, Su
e K E (l)(r K

—1uk"t+1k z

—ilwy . tHik Z}: (1 TlupwtHikTz

KB (l) -
05t 2: b e uk"Lk" C (147)

! klakl

Not~ t+hat the secularity-vroducing terms lcad to slow \1r€1Lions
in the mode amplitudcs as expected. To pilcr out a particular
cigenmode on the left, multiply the left and richt sides by the
complex conjugate of the left and integrate over the resonator
volume and time:

auk ic2
5 = du, 2. dvdt expli (i ~w, =t ) t=i(k=k'-k") 2]
kl,ku
2 C(Lyx (1) (1)
X (wkl + Ufkn) ank'uk"Lk Ek" C}.;l

+ g--i: kw[dvdt expli(w Wy mWy e~ ku)t i(k-k'-k") 2]

LW, () (1)
X (u)k, + (Uk,,)uobkluknEK hkn (,‘k, (148)

. . 2 .
where the ecigcennodes are normalized such that fd"rb,
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There are scveral possible cases of interest:

(i) Consider first the case in which there is no diclectrice
modulation (cp (1) (x) = 0).

Taking the limit that vt (the slow modulation of the
gain and locss term) comparecd to optical freguencics is negligible

requires that wp = wkr. That is, the two clectromaanetic waves
have the same natural (unperturbed) freguency of oscillation.
One way this could happen would be if k" = %, i.c., the lasing

mode is "coupled" to itself by loss modulation arising from the
acoustic wave. Alternatively, the two modes may be distinct,
although degenerate in fregquency; this case is treated in detail
in Section II. In the self-coupling case we obtain

Ju

K2 “ilupat / 2 (Lyx. (1), (1)
g T © Ho(bk.c )Uk,, d®r I',k Gk, Lk" (149)

with a similar eqguation for Uk"' Making the following identifica-
tion

_ .2 Tlepet /2 (%, ),
aRéoQO = cC “Obk& LI d°r Ek (r)(p. (r)Lku(~)

\

results in the equation used in MMI-1 with o being the density
perturbation by the acoustic wave. The gain term can be obtained
from the polarization term as is done in Appendix D. The akove
identification of rp+ (1) with density fluctuations is not unrea-
sonable since the cavity and medium losses for simple systoms can
be relatced to the quality factor of the system which in turn
depends on the index of refraction. Besides the case LT wpn it
is also possible to consider the resonant triplet P T TR O P
k = k' + k" where now the two clectromagnetic modes are soparated
by the acoustic frequency. The only difference is that now the
—imk.t
e term in Eg. (149) is replaced by unity. The right-hand
side is again related to the density fluctuation. This is the
case of conventional amplitude modulation by a resonant triplet.

(ii) Consider now scparately the case of no cavity and medium
loss variation (¢ 0) but nov include a dielectric roddulation
€t 4 0. To proceod further woe develop a simple mndel Tor P

The spocific modulation of the medium that is to be studied is
that due to an acoustic wave.

7. M. Born, E. Wolf, Principles of Cptics, Pergaman Pross, NY (1959)

*
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From microscopic considerations (see Appendix E) it
follows that the dipole morment of a molecule is given by
p = (tEaff + c-c) where v 1s a frequency-dependent proportionality
constant and F.fg = E for a gas. The macroscopic polarization(8)
of the medium is then given by (for N molecules/cubic centimeter)

P = Np {(150)

with the dipole moment given by p = (aBE + c¢.c). Note that =, N
both depend upon the intensity of the field. Since the sccular
part of the response comes from products of(first—ordcr quantities,
1)
(1),.(1) 1y . 9x (1)

using D__ . = ¢ E = £ grNy )Ek

+ c¢+.C lecads

to

au w
k . 7k 2 (1) L (1) * (1)
s = 1 5 uk"aORw/; rNk (t,r)Ek Ek"

+ cuk,./dzrgk(l)(t,r)Ek*(l)Ek,.(l) (151)

Q-

where it was assumed that the fast acoustic exponential variation
has been extracted via the reguirement that

+ W (152)

Wy

k = k' + k" (153)

and the fast transverse variation in My (1) ana g (1) is taken care
of by the electric field variations whlch have different transversc
mode structure

k.'=k '+ k" 154
| 1 L (154)
where k ' is fixed by the acoustic-resonator geomotry In the
plane wave case the spatial intcgrals can actually be donc and
lead to
(1)

du 0

ko3 kg k' c (1) .

5 P2 BT e g Gk Uk (155)

8. A. Yariv, Int

1 [quctlon to Optical Ilﬁ(trnnxce, Holt, Rinchart,
Winston, NY (1971)
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Ju D (=
k" 1 PRt c (1)
= -~ .17 S, , + = ok =
5t 2kt U+ 5 9x Uk (156)
(&

G = appi,p/m is the Gladstone-Dale coefficient, 14 is the atno-
spherlg density and * dbr?iwb complesx conjurate gquantitics,
Equations for gj. will be derived in the nexst gection

The only term which can drive the cain crquaticn resonantly
[that is, so that Fas. (152) - (154} are satisfied] is the flux
term. Thus, the sccular part of the gain equation is

(1)
ac u n*
Ik _ (1) (r-1) YxUk c
T T T Vg% T 90w T, 157
"0
whe;e r =1+ ¢g/tg and g = cgouk2/2 and (yvg = 1/37 + V4/b (where
Vo 1s the flow velocity and b, the anode-cathode distance) iv U
total damping of the gain term including convection and deactiva-

tion of the upper level.,

The equations describing the mnedium are the continuity,
momentum and heat-transpert cguations,

90 —_— _

e + vV oV = 0 (158)

av y o= - P '

St VoW o= 5 (159)
al) [ = :LR Zjﬂ . e = — CQ—

where ¢, V, P, dQ/dt are the mass density, fluid velocity, pressure
and heat deposition rate; y is the ratio of specific heats.

Linecarizing Fags. {(158) - (160) would produce the standard
acoustic-wave cquation. However, since the heat deposition tornm
can have components at tho acoustic frequency, this leads to a
sccular response in the acoustic oquation.  This cocularity ig
once again taken care of by letting the amplitudes be olowly
varying. The lincarizcd acousiic-wave cquation ({fer the nmass
density) is given by

. 2 2 2 .2 .

A N 2! ! 20 oy g (1) RN :

vt Vol o Vo T O 2 ) - G- aen
s ax d_y
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Q
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where Vo is the transverse flow velocity and Cdz = vRT 1s the
acoustic veloczity. The heating term has been included in antici-
pation of the seccularity. The heating term is obtainsd Tor a COp
laser by conscrvation-of-cnergy arguncnts; it takes the followina
form:

v * v v ~icy, ,t+ik_'.r
P = Cgo ;i U Uy + (Qo-l + 1:5 ;}>qy}” o k a + c-C
0 Yo o/ *

(162)

where vy/vg is the ratio first excited state to ground state and
c-c stands for compiex conjugate. Since P does indeed vaery at

the acoustic freqguency (note that use of Egs. (132} - (154) was
made) it will produce a secular response in Eqg. (161). The slowly
varying piece of the acoustic wave is produced by,

(1)
op
k' - (1) (v = 1)
3 % T Yafx: + 5 P (163)

where 14 is Lhe convective damping of the acoustic waves, Py is
given by Eg. (162) and pyx+' = mNgr where m is the mass.

The linear instability is obtained by assuminag that one
of the clectromagnetic waves has large amplitude and hence decays

into the second elecctromagnetic wave and the acoustic oscillations.

Thus assuming the ¢ = constant and using Bgs. (156), (157) and
(163) leads to the determinantal equation fog*tho instability.
Assuming that up . - edt, Ppr ~ ef*t, Gpr -~ ci*t leads to,

f ¢] u
K or Kk
| - 5 | miege SR
l I
————— |
Go1 St Say o
1 ¢ l g
o]
R N
l
t (1-Y)C10 vy : ) ( vy A \»3‘>‘ .
— u * (1-v G + == +y
\\ 2 Vo k l 2 ca2 0 0 S 0 l a
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Setting the determinant of Fg. (164) cqual to »cro, leads to the
polynomial cquation for the instability. Defining
a = Cgo (r - 1) a = wk” fﬁ - Ce ,i : |2
1 T ) i 0. 2 Jo v (o
a C 0
a
wkll Bg go (r - l) \]’ - 1 . \)l \‘3
BT s, e TR 7 Vot ot O
a C 0 ° 0
a
where £ = Gladstone-Dale constant and a is atmospheric density,

we obtain

(6) (6 + Yg)(d Y, a8+ yy) - ia, (8 + yg) + iR = 0 (165)

The acoustic damping is given by vz = Vo/b where Vg is the trans-
verse gas flow velocity and b is the ancde-cathode distance. The
damping in the gain equation is given by vg = Vo/b + 1/1 where =

contains all the collisional relaxation rates.
C. NONLINEAR SATURATION

1f now, it is assumed that up does not stay constant but
decreases significantly (as energy is transferred to the other
waves), 1t is necessary to include an cvolution equation for Uk .
That is Eq. (155) must be included togcther with Egs. (156),
(157), and (163). Unlike the three-wave cquations of plasma
physics, which can be solved in terms of Jacobi clliptic functions,
this set of equations can only be solved numerically. Some insight
into these solutions can be obtained by examininag the conserved
quantities. Using Egs. (155) - (157) and (163) 1lecads to,

2
2Lk
at

+ wk" ;
I * " . \
(qu.uk uy + c-c¢) (166)

u ’ 2 w
+ ___}_{___._ = ._}:___w
Yk “k YrPk
This can further be reduced by using the equation for S

2 2

2
el Bl e ey gk
ot Wy mk" wkmk" Kk qomkmk" T b r ~ 1
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The convective damping has been included simply by replacing
Vod/%X in the acoustic cquation by Vo/b where b is the anode-
cathode spacing.

In order to understand Eq. (167) it is necessary to examine
Figure 8. During the linecar-lasing stage the second electromag-
netic wave is negligible and the acoustic noise has not made a
transition in the anode-cathode direction. Once the primary
electromagnetic wave, ug has been saturated and rcaches steady
state and the acoustic noise has had time to propagate across the
anode-cathode separation, the lincar regime of the instability
sets in, whercby the primary electromagnetic wave fceds the
sccondary electromagnotic (em) wave up» and the acoustic noilse.
Eventually the primary em wave is totally depleted. This results
in the secondary em wave also dying out in onc or two round trips
in the resonator because of the output coupling. However Lqg. (167)
implies that the nonlinear proccss of supplying encrgy back to the
primary wave will not take place because of tne dissipative natur2
of the acoustic waves. The energy can be made to flow into the
secondary em wave and the acoustic wave but will not flow back to
the pump. Thus, once the pump is depleted the instability stops.
The entire process begins again, however, because ug bullds up
due to the laser properties of the medium. The acoustic wave may
rem~in into thisg region because of its relatively long decay time.
This featurc may lcad to a degradation of becam quality of pulsca
lasers, as well.

D. SUMMARY

The physical processes involved in the instability are
illustrated in Figure 9.

Consider a largc-amplitude wave at frequency g and wave
number kg. In the presence of a density fluctuation at frequency
w and wave number k, a second electromagnetic wave (g =~ .,
kg - k) is excited through the nonlincar polarization. This wave
is a higher-order mode of the unstable resonator and honce could
have a higher loss rate than the fundamental mode. Therefore, it
may not be excited in the absence of the density fluctuation. The
two clectromagnetic waves in turn amplify the density fluctuation
through the heating term. In addition they excite fluctuations
in the equilibrium gain through the flux-saturation term. This
completes the feedback "loop." Since the heat depesition 1s a
dissipative process, this instability is nonconservative and turns
itself off. The reaseon for this i1s that once all the encergy from
the primary wave (wg, kg) has been deposited into the secondary
electromagnetic wave and the acoustic wave, there is no way of
returning the encrqy to the primary wive as would bo the case of
ordinary conscrvative nonlinear instabilitics, ocause of the
additional loss of the seccondary wave (higher-order mode) 1t, too,
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leaks out once the primary wave has decayved., The whole process
restarts because the primary wave is once again built up by the 1
lasing medium. The acoustic waves may remain present throughout

this phase because of their relatively long damping time constant.

The equations we have derived in our differential formulation
reduce to those of Section I1 when the two electromagnetic modes
are degenerate in frequency, as they must.

The process of dielectric modulation was studied and also
shown to be unstable. This is a form of Brillouin scatterirg
including the effects of gain-flux oscillations. ' i
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SECTION V

UNSTABLE RESONATORS WITH SATURABLE GAIN

A. INTRODUCTION

Unstable resonators have found widcespread use in hiohi-
gain lascrs. As carly as 1965 (%) it was recoumized that these
resonators are desirable for a number of reasons.  These
include:

1) The large mode volume that can be obtained.

2} The uniformity of illumination (and hence encray
extraction) scen by the gain medium.

3) The relative freedem (compared to stable resonators)
from undesired higher-order transverse modes.

In the realm of geometric optics, the oueraticn of an
unstable resonator such as the one shown in Fiagure 10 is
obvious: The output is a plane wave. However, when diffrac-
tive effects are included, mode prowperties ore not obwious and
the calculation is complicated in the extreme. The understand-
ing of unstable resonator propertices that has evolved over the
past 15 years has been derived from the ~radual development of
ever more sophisticated calculation tvchniqnvs.‘ln‘l”) Prior
to this report, the study of unstable resonators had advanced

9. Sicgman, A.E., Proc. IEBE 53, p. 277 (1965).

10. Fox, A., and Li, T., Bell Syst. Tech. J. 40, pp. 453-488.

11. Streiffer, W., IEEE J. Quant. Hlcct. Oor-4, pp. 229-230
(April 1968).

12. Bergstein, L., Appl. Opt. 7, p. 495 (1968).

13. Chen, L., and Felsen, L., IERE J. Ouant. Elect. OBE-9,
pp. 1102-1113 (Novemiswr 1973).

14, Horwitz, P., J. Opt. Sci. Am. 63, pp. 1528-1543 (December
1973).

15. Moore, G., and McCarthy, R., J. Opt.
241 (February 1977).

Soc. Am. 67, pp. 228-

24
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Figure 10. Telescopic Unstable Resonator, Showing
Collimated OQutput Beam
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to the point where the effects of diffraction and deterministic
intra-cavity gain distributions were understood. (15)  In this
report we carry the level of understandinag one step further,
and include the self-consistency problemn associated with gain
saturation as found in actual lasers,

B. NOMENCLATURE AND STATEMENT OF PROBLEM

In this section, we express the coupled diffraction and
saturated gain problem in terms of the once-dimensional strip
confocal unstable resonator, as shown in Figure 11. Comparable
analysis can be made using two-dimensional rectangular svymmetrry
or circular symmetry resonators, but we wish to avoid these
additional mathematical and computational complexities here.

It should be noted that, for the case of empty (no gain) reso-
nators, the diffractive properties differ only in detail among
the several geometries.

In the absence of either a saturable or non-uniform gain,
the optical properties of the strip resonator are described by
the well-known integral equation(16)

1 + ¢

+

.2 1/2 2 \2

xf(x)==<37i-ﬂ— Feff) Jf exp |- in P <x' - i)
MS -1 /. -1 ¢f

In this equation

f(x) = the comples optical amplitude in the plane of the
feedback mirror
2 = the eigenvaluc corresponding to f(x)

M = geometric magnification
F = the so-called cffective Fresnel number

= (@%/0 L) - 1)/2]

X' = wavelength of light (not to be confused with V)
16. Weiner, M., Apil. Ont, 18, poo 1822918704 (June 1079 0 The
basic resonator caguastion s decoribed in o nuerons paper:,

ol
but this work is the only one to oy
terms of the effective Fresnel nambe

2
¢4

recs 1t o explicitly in
r.
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Figure 11. Nomenclature for Unstable Resonator
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N
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feedback mirror size

e
it

the normalized optical axis offset or tilt. ¢
takes on values from 0 to 1.

Eguation (168) is just a formulation of the requirement
that the optical amplitude distribution reproduce 1tscelf, to
within the constant Y, after making a round trip back and forth
in the resonator. For example, in the limit Pagg ~ ¢, diffrac-
tion effects vanish and Eg. (168) takes on the form

A (x) = £(x/M) (169)

which has as a solution f(x) = constant and \ = 1., This i3
rcadily identified with the geometric optics result of a plane
wave scaled in size by a factor M every round trip, with the
output coupling seen to be

L, =1- (1/M) {170)

which is just the fraction of the mode not blocked by the fced-
back mirror.

In many cases of practical interest, however (e.a., infra-
red lasers), a geometric descriotion is not sutfficient and dif-
fraction effects must be included, even thouah the optical
properties may be largely gecometric in character. This corre-
sponds to solutions of the integral equation for which

1 < Feff < 100

1.5 <M < 4

For a given combination of M, Fa.rf and ¢, there are scoveral
solutions, cach with its eiarnvalue and eicenfunction, corro-
sponding to the several transverse modes of the resonator,
With the cigenvalue cquation defined as in koo (16H), the
(one-dimensional) output coupling Lo(i) associated with cach
mode is given by

Lc(i) =0l - (171)

We may assess the of fect of di

i fraction by monttoring
output couplina, or equivalently, [V)

;o8 Pogy s varyed,

»
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AVCO ¢ e 1




Figure 3, from Ref.
and Feff betweoan

apparent,

1f the modoe-

leading to

In any realistic high-efficicncy
be saturated.

not been assessed,

Section E we show
behavior can be reclated to the aligned

METHODOLOGY

For the present
combining a number of techniques which
The result is an iterative procodure which
not only the lowest loss mode,
simultancously.
convergence is obtained in {ive
no difficulty obtaining a solution in the v

tor modes,

However,
intricate,
to the original refcrences for compleote

cigenvalues and corres

detoermined.

Perkins, J., and Cason, C., Abpl. Phys.

(March/april

f

a curve
An overall
as degonerate crossing points
saine value
such pcints may cause undesirable mode hoppina.
pattern of diffraction-induced output courling variation exi:
if Feff is koept constant, but the position of the optical axi
is varied. (17,18)
the magnitude of the output coupling ripple 1o important
for assessing mode-medium interaction effrcts.,
ation is perhaps the more likely in an opceratina device,
can readily be induced by,
density perturbation,

wrjodlicity

a mirror vibration,
MMI instabilities.

laser the gain will
The effect of the presence of ;
theoretical curves such as devicted in Figure
and provides the purrose for this otad
the main theoretical analyvsis, we consider only ali i

I‘\‘I.

actually deaoen-

how

Casc.

devel (“:,‘L‘&E

have

also the :
for a hichly saturatod
iterations g

We outline hecre the techniques which comprioe
nents of the algorithnm. !
of these are in places quite
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EFFECTIVE FRESNEL NUMBER

Modulus of Eicenvalues for BEmpty Unstable Resonator
with M = 2.9 and Faere from 5 to 20, Mode degoner-
acles occur where the curves cross.
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This thecory can be summarized, in fairly physical ‘errn
as follows. The amplitude function i (x) 1s cxpandoed oo
;Pries of slowly modulated cylinder waves, plus a core term
f1 as follows:

N ik r (%) 1 K r (-x)
o n o n A~
£, (x) = nop(x) = — + f (-x) = — + f ()
, - "n,i R 1
ne 1 wrn(x) .rn(—\)

(172)

The origins of the cylinder waves are successively further removed
virtual images of the fecdback mirror edacs (Fiaure 13), corre-
sponding tc light that has made n trips around the resonator.

Then ry,, is the distance from the nth virtual imace to the obser-
vation point in the fecdback mirror plane. In the Fresnel
approximation, Eqg. (172) becomes

1/2 Lok - w)?
£.(x) = 1 LR — U
[ W B i E—— ittt
n n
n =1
(173)
1. 2
5 ik(x + xn) A
+ exp f (=x) )+ f.(x)
- W n i
n
The origins of the cylinder waves are at the points
woo=ameh - 1) (174a)
n
x_ = am" (174b)

n

Use of Eg. (173) in BEqg. (168) leads to a scorices of intearals whic]
arc solved by the mothod of stionary pharo, (I Thiv s valid for
Fafrr >> 1, but has been chown to aive reasonable roeonlts for

Fers 2 1. When this is dene, the modulation functions © o oand
the core term {\1 are found to Lo expressihle in torms af Gther
resonator parametors.  The final regult 1o o complos polynemin!
in a parameter

19. pBorn, M., and Wolf, Il., Principles of Optaics, Sth Bd.
(Pergamon, Noew York, 1975), pp. 752=7540,

©
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r,(x)

(x,w)

COMMON FOCAL

Ist VIRTUAL
IMAGES

J6065

Figure 13,

POINT

T

=

First Virtual Image of Feodback Mirror Bdacs.
Coherent addition of contributions from numorous
such virtual images cives risce to the conplicated
mode structure of the resonator.
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1 i 1/2
! "ﬁ(z;gg) .
N o+ 1 g
: }E: [exp (2 m i F g g\)F;l/z + coxp <2 w1 Fre F;I)F;I/zjnn
n =1
. <1 3 m for symmetric modes when n = N + 1) (175)

The plus and minus signs denote symmetric and antisymmetric
modes. Here

-n
g =i M (176)
1+ M

and the original eigenvalue X is found from

X = glx | (177)

The lowest-loss mode corresponds to the larges value of [X].
The corresponding eigenfunction is found from using

' n -2n
fn i(x) - (EM)—él M _; (178)
! (1l -M“)(a +M x)
and
N + 1
N\ M w2y -1
£.(x) = 53— Y la(l M 7)] ‘
(179) :
|
e2 ﬂlFeff i
<2
/d
in Eg. (172). Since the expression for f; has a factor 1 - u in
the denominator, and since |[M = 1/]u| ~ 1 for the lowcst-loss
mode, it dominates Eqg. (172) for regions incide the shadow bhoun-
daries (x = + Ma) and represents the "geometric" part of the

solution.
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The number of virtual images, M, which are needed to fix
the order of the polynemial, can be estimated in the following
way.(zo) Consider the confocal unstable resonator shown 1n
Figure 14 with a spherical wavefront emanating from the common
focal point. Radiation within the angle

01 = f—“ (180)

which makes one round trip through the cavity, will exit magni-
fied to the whole mode size D. Similarly, radiation within the
small corc angle

n
6 = D/M (181)
n f2

. ) . s n . .
which makes n round trips, is magnified M times, and also exits
: : - ; Dt D ey
with the full mode size D. ([This core region is where T3 (x) in
Eq. (172) arises.] If we desire the cavity to be "diffraction
limited" in the usual sense, the exiting radiation must have a

cavity angular spread of

=2
0, = (182)

By requiring the angular spread of the core region to match that

of the whole cavity, i.e., €y = 0c+ we have
ND =% (183)
M f2
whence
o In (8 M F q) (184)
In M

In practice, it turns out to be uscful to add two or three to
N as calculated by Eg. (184), to guarantece that N will be larve
enough. A similar formula used by Horwitz (14) jg

In (250 F )
o f
N = In M : (185)

20. Anan'cv, Y., Sov, J. Onant. Elcct. 5, pp. 615-617 (1975).

f

. CAVEO ¢t vt Fe 1




et s e et A

MIRROR
2

MIRROR
|

2 ———

D
D M

—
v \//

+ 5= M,

v

J6072

Figure 14. Angular Spread of the First Iteration. For
radiation making only round trip of the
cavity, the angular divergence 1 cxceeds
the output beam divergence Y/D.
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2. Intensity Renormalization

The lowest-loss mode intensity distribution I(x) =

| fo(x,d) 2, correspondina to Yos is normalized to the satur-
ated intensity, Ig. To do this, we cormp te a geometric
intensity, I4, using the theory of quometric strip reconators
with saturable cain. (21) We then require that the averaue
intensity over the feedback mirror be the same with and with-
out diffraction:

+Qa

1

= / 1(x) dx = 1 (186)
-a

This is to a certain extent heuristic and is strictly true only
in the limit Feff *» «, but is a resonable requirement for the
range of Fofr¢e's of interest.

In the geometric theory, we begin with an assumed fi+18
form in the cavity; namely, a modulated cylindrical wave oma-
nating from the confocal point, and a medulatced plane wave
exiting the laser:

g =2 L v d 0y % KR g, (187)

Vo

{(Nomenclature is defined in Fiqure 15. The function f(z,r) here
is similar to but not the same as the [ function of S.ction 1.)

The boundary conditions are that the amplitudes vanish on the
mirrors:

1 r
f(0,r) = 173 q (L + d, —--—7> (188a)
(L + d)l 2 L + d
and
.
f(d,r) = *{%~ g (d, %‘>O21“L (188h)
. d ¢

By starting with the time-depoendent wave equation

2
2 2 R g
cfvip = Sl -2 ey (189)
at” ‘
21. Moore, G,, and MoCarthy, R., J. Opt. Goc, Am. 67, 0 221~

227 (rebruary 1977).

-
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Figure 15.

Nomenclature for Geometric Strip Resonator
(after Ref. 21)
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and neglecting all seccond-order derivatives, we obtain, using
the assumed form for E, the rate cquations

af _ G f (190a)
z

and

.ag = GOt

5o G g (190L)
The gain function, G, is assumed to saturate according to the
Rigrod relation(22,23)

Go
G =T_+_T/Af; (191)

where Ig is the saturation intensity and I is obtained from

2 1 2 .
I=|f(z,0)|° + 5 lg(r,n) | (192)
The form of Egs. (190) suggests definina
fz,r) = £ (193)

Then, from the boundary conditions, Eg. (188), and noting that
M =1L + d/d, we have

H{0) =0 {194a)
!
HL) =g dnH (194D)
Furthermore,
gL +d=2) = (L+a /%M (1095)

22. Rigrod, W., J. Appl. Phys. 36, pp. 2487-2490 (August 1975) .,

23. This formula assumes ro interfercnce betwoen forward and
backward traveling waves, I cuch intoerforenece omiata, the
effect 1s to chift the overall value of iatenaity by cmall
amount. Scce G. Aarawal and M. Lax, J. Opt. Soco Aol 69,

pp. 1717-1719 (Decemhor 1979),

@
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Using Egs. {192, (193), and (195} in Eqg. (191) yields

(196)
24 L + d -2H [ .2
1 + le + (Ef"-*é“L—T“z' > C fg

Determining a solution consists of finding o value of f, such
that the boundary conditions [kg. (188)] are obtained when

Eq. (196) is integrated. Then 1q = M fa is used in bBg. (186)
to normalize the diffractive result.

3. Propagation Through the Gain kcaion

The renormalized f,(x) is propacated throuch the gain )
region, using simultancous forward and backward propuuation.(z“)
This process is illustrated in Fiagure 16. Censider a point
{x,w) in the reaion between mirrors. Here, w is a coordinatoe
measurced from right to left away from the fecodback mirror.

The "forward" part of the propagation consists of the
expanding protion of f,(x) reflected into the cavity by the
feedback mirror, and thus provacatoes from rioht to 109t in the
figure. In the absence of gain we have, from the ¢

scalar theory
of diffraction, the complex amplitude at a point (x,w):

+2
- C e - oy | IR2 . -
UCx (x,w) = v/ﬁ h(x,xl) fo(“]) oMp [Zd Al] dhl (197)
-a

The exponential term is the phasce curviture recsulting
curved feedback mirror. In the
propagation function defined by

from the
Fresnel approximation K ois the

. 1/2 .
Ki{x,y) = [X]L] exp []):, (x - y)z] (198)

The "backward” portion ia the entire cxtent of (),
prior to hittinag tho mirrvor, cevolving b schweard in tie-.  Thios

propagation is coffected using the complox-conjugatoe propaaation
function:

24. Louisell, W., et al., Appl. Opt. 18, ppo 2730-2731 (15
August)

. %
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a) "Forward" Propagation

ATTENUATION —

16071 b) "Backward" Prowvagation

Figure 16. Simultancous Forward and Backward Provoaation
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+ ™

U (x,w) = K* (x,x

BKW dx, (199)

1) fo(xl)

Thus it, too, propagates from right to left. 1In this way, both
waves move into the gain region in the same spatial sensc.

Locally, the saturated gain is computed using, again, the
Rigrod formula:

G
G(x,w) = 20 5 (200)
1+ ]ch(x,w)l + |uU (x,w) |

BKW

Of coursc, liaht reaching a particular (x,w') must have traverced
gain in the region w < w'. To account for this, we¢ Insert in
Eg. (198) a line integral term

> -
Gex(x,w,xl) = exp V/ﬂG(f) d: (201)
-
where ¢ is a vector connecting the observing point (x,w) with
cach point (x1,0) on the fcedback mirror.

For the backward wave, gain becomes attenuation, so that

> >

GBKw(x,w,xl) = eXp —.jfc(f) dar (202)

is used in Eg. (199). This scheme permits systematic calcula-
tion of G(x,w) in the direction of increasing w.

4. Modes in the Presence of Gain

T2

. r\ .
The analysis of Meoore & McCurthy(l') o ts o asymptotic

calculation of unstable resonator modes © 0 4 vy Tunction
can be specified. In their work, G(x,w) was a pocrtulated Yunc-
tion, but this nced not bLe co in aeneral, and, as chown above,
we calculate it from the mode pattern itoelf,

To include the offectas of gain in the resonator analysic
the cigenvalue polynomial [Eq. (175)] 1s modificd to read

@
-
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The new functions, “p(x), are integrated gain functicns vory
similar to Eqgs. (201) and (202), except that the vath of inte-
gration forms n round trips through the cavity, startins at the
mirror edge (x a) and terminating at the point x. Specifically,

F%(x)

I
°
o)
o
»
—
=
Pl
o

where the integration paths are along vays witho ooc oy it

,~n ot _ o .o - o
X (2') = ~~M—_2~ {[1 D D F v Y SVl LS R PR B R VLI
1-m~ <"

and

Xy twh) = Mo -{:-x”‘[:~:-r-1"“11 SR N TN I S T

The physical significance of thoeoe rave oo e SRR :
FP4a); in this care, the tays oot Cone ot L rag 0 o e
images of the fecdback mirror odooes.

The amplitud o funetdoan S0 (x) 1o ot {0 e
. (172), save ot new bl Comr o nent s g U S B A8

I
fi(x) arc to be maltiplied Yoy T x) and ), e e




In this analysis, we always assume that the lowest-loos mode
detcermines the intensity in the gain region, so that I'' func-
tions have an implicit i = 0 subscript.

5. Iteration to Converaence

The updated £(x) amplitude distribution is propacated into
the gain reqgion as in step 3, and a new f (=) calculat«d s in
step 4. This process is repeated until convergenos 1z obtoined,
by which we mean that the change in the lowest-loss celgenvalue,
Ao, is less than some valucs

AX < & (2006)
O

Since g ~ 1, this is the same as having the fractional change
into Xy be less than &,

For a GoL of 5 (i.e., round trip unsaturated intensity
gain is el0y, a converacnce criterion of 7 = 0.002 roguiros
<5 iteratlong; for * = 0.0005, the number is ei=sht to ton,
There appear to be two reasons why converaosnce is ranid with
this a]qorlthm. First, tho saturated cain cslrw]ut)or Slwavs
beains with an (=) derived freom an empty rescnatoer calcula-
tion. Thus i1n a sense it treats aain as a pnrturAathn. Py
second reason is that the intearated gain functions, 7' (), arve
fairly smooth, because they intearate out fine scale lonartudinagl
(w-dircction) gain ripple, and do not chance by much Lotweon
iterations.

It must he emphacsicl that the iterative alaorithnm
sented in this vaper if cundament oYy di ’fwrunt from i
1tclatlon(1() aenerally wocd to simulate Jasers with eatu
gain. (25) In the Fox-l.i scheme, the recsonator inlearal oon
1tself is {terated to converaence, startineg with some aoared
initial mode share such ot a plane wave or Goauscian., In cuch
schemes, the only knowlod o of the mode surcivins from pass o
pass is contained in the numerical array which svocifioa £ (x).
The mathematical maniralation necded Lo (=
the cavity of necessity coocumulatos orro o
as roundof{ error, and {rom arproximaticons used in o pror oo
tion scheme.  The necessity for matntaining a hiabhlye acouerate
copy of f(x} Implics hiah campllng froguency
structurce scale sices contained 1n F(x), with : '
computcer storace reoulrernnts dictate o opracticas! oapr oo Taimit in
Foff, usually around unity and certainly loas than 10,

&)
¢
s
¢«
i

25, Szillac, Yo, and Sicaman, AL, Apol. Ot 1A, pn 190718000
(Avsust 1977%) 0 The compater olg et o than
paper is tho archetype of a number ol ol V\ll] tien coden in

usce today.
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In contrast, the method presented here nceced only pacs thoe
cigenvalue )y from itcration to iteration. PFurthoermore, since
the T''(x) functions are sensitive only to the largest swoatial
variatio 5 in gain, a highly accurate propagation through the
gain region is not cgscntial.

D. RESULTS

The basic purpose of this calculation is to assess the
effect of gain saturation on well-known diffractive mode prou-
ertiecs. To this end, wo consider the particularly 1llustrative
casce of a rescnator with

M= 2.9

F .. = 8.892, 9.390, and 9.863

Referring again to Fiagure 12 these Fere values corresvond to
(in Horwitz's terminoloay) a so-called crossing point, a point
of maximum mode separation, and a cusping point, respectively.

To choose appropriate small-sianal cains, weo consider tho
stecady-~state oscillation condition for a strip resonator in the
acometric limit:

2 G L/{1 + (1/1.))
1. 7o 5 = (207)
M
or

GOL = % (1 + (I/IS)] In M (208)

We will consider the threce regimes of intercct:

I/IS << 1
I/lS = 1
/1. >> 1

A very low value of I/1. is the same as the ecmnty-roconatoy cal-
culation and is colculated as a matter of course for any of her
casc. As an exanple of the intermediate case we take G

In ¥ = 1.065, so that 1/14 = 1. For I/1g >» 1, we have chousen
GoL = 5.0.

7§
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A comparison of the preacst method with other results i
frustrated by the paucity of other results, and by the {
since other mothods use Pow=Li fteration recuirine low o
results are avallable at the conditions listed at the booinnis o
of this scction.

Nonetheloess, we have caleunlated a cane Yor comuarison,
with results obtained Ly Keonsch and Chestor, (26) Iro tno1y worrin,
a Fox-Li strip resonator calculation was moedi
saturable cgain sheet pocsitioned riaht at the
the amplitude wave as pronsaated to the primary
fied and saturated using the Ricrod formula (wi
sity doubled to account for incoming ana ounte
propagated back to the feedback mirror. The
eters are:

M= 2.5
G L = 4,583
Tor this value of Forg the asymriotic metheld 1tE rowamn
of proven validity. aleo, Rensch and Choootor SRR

comrarieon

elgenvaluces but only intensity distribulions.
of their results with ours must of necessity be

lative.

Figurec 17 compares bare resonator intons
gives a clue as to how the asymptotic mothed

low Faegr:  the fine scale detail is lost,

is basically the same. The situatien with aain
{Figure 18). It will be noted that there is
in the location of the side maxima. In our calceulation, bthow
occur at slightly hicgher valuns of w/a.  We suspect LD this

is duc to an imprecision on Rensch and Chester's vart in caleon-
lating the eoffcctive Presnel numbor, since with discoreis 1nie-
qration schemes there i1s always an uncertainty in just where the
feedback mirror ends.

For the princiral caleulations, the anin war con®ined 4
a region frem z - 0.0 L to 2 - 0075 1, wince in ooy hioah oo v
doevices (wivre wnstab)le resenators Sind Sl areto cr nr o)

mirrors are somewhat resoved from the Tostner moeliam. Hovroon,
this 15 pot covential ta the alsorithm, and the coin can e
placod arbitrarily bhetween thoe mirroras.
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26. FRenach, bo, and Chester, A, Appl. Opt o 12, pp. an7=1010
(May 1973) .
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INTENSITY (ARBITRARY UNITS)

T T 7 T T T T T
1.0 =
0.8} —
06} —
0.4f o =
02} 1
0 1 | | ! 0 | 1 ] !
0 0.5 1.0 1.5 2.0 2.5 o] 0.5 1.0 1.5 20 2.5
16067 (a) x/a (b) x/a

Figure 17.

Enpty Resonator Modes as Calculated (a) b Rensch
and Chester and (b) by Our Analvsis., Here M o= 2
and Faff = 0.064. Even thouah nothoed (L) ia - od
here cutside its ranage of validity, the aareemoent
with an exact calculation is guite cood.
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INTENSITY (ARBITRARY UNITS)

0 1 L 1 | 0 1 1 ! L
0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5
x/a x/a
96966
Figurce 18. Same Calculation as Fiaure 8 Except Saturable Gain
with GoL = 4.583 Near the Primary Mirror
-
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Results for Farg = 8.892 and G,L = 1,065 are shown in
Figures 19 throuagh 24. Figqures 19 and 20 show intonsity and
phase for the first pass, i.c., before any cain saturation,
but after renormalization. The units of intensity are such
that Ig = 1. The results after 5 pasces appear in Figures 21
through 23. The first depicts TJ(x) for various n. As n A
increases, the curves approach a limiting form. As one would j
expect, the T''(x) have maxima and minima inversely roelated o
those secn in the intensity plot. Inspection of the bare
saturated intensity profiles shows that the fine scale diffr:
tion features are voery nearly the same in both cases, soave that
the overall envelope of the intensity is made more uniform. e
note that it would be hard to claim that the diffractive com-
ponent of the pattern is exactly suvpressed by cain saturation.,
Figure 15 depicts the saturated gain in the resonator. The
optical axis coordinate is in parcentace of w/L; i.e., 0 is the
fecedback mirror location and 100 the primary mirror. The gain
scale 1s 1n units of gain per optical axis increment. Thus the
unsaturated gain is seen to be 1.065/50 ~ 0.02.

Figures 25 through 28 are for F,er = 8.892 but with G
increased to 5.0. The most noticeable cffect of the incroa:
gain is that the very small amount of "stray licht” well bes
the geometric mode size becomes significantly amplificed.  Sin
real devices often have scraper aperturces specifically to o=
clude such radiation, its appearance in the vprocent calculation \
is probably not important. One can also discern that the ranae i
of intensity excursicns from a mean valuc has beoen still furthe
flattened. Interestinaly enouah, the phasc profiles are ncarly
identical among the three cases.,

[ S

e

b
b

Figures 29 through 38 depict results for Fare = 9.39, and
those for Feer = 9.863 are shown in Figures 39 throuah 48, 1t
will be seen that the same qualitative observations can be made
for these cases as well.

The preceding plots do not hint at the dramatic effcct of
gain saturation on cigenvalue, and honce, output counlina, In
Figure 49 a portion of the empty cavity plot of Ficure 12 is
reproduced for Foeg between 8.5 and 10.5, alona with results
from the present calculations. Tt will b scen that the mode

dcgencracy at I re = 8.892 is lifted, cven for the Tosser value
of Ggly = 1.065 corresponding to 1/14 = 1. Calculations at
closely spaced intorvals near Fore = 2,892 hoave vorifiog o !

the degeneracy is truly lifted, and not just moved to o noearpsy
Fresnel number. It is also evident that even at the cusping

point the ripple in mode oepavation i reduced, thaweh, oo ‘

. s . ) : }
singly, there is not as much difforence botwoen the o1, 1.00% |
and G Ih = 5.0 casces as there is between thoose ond the empty-

resonator caseo.,
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Figure 19. Intensity Profile for Fmpty Resonator. B BB,
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PASS= 5.000
5 FEFF= 8.892
o GOL = 1.0065
M = 2.900
:
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Figure 22.

Intensity Profile “or G T« 1,065, Pee - & BOD,
The result here dg o very samilar in det ] to the
enpty resonator cane (Phravro 17) bat the correlop o

of the distribution 1 flatter.,
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Figure 23. Phase Profile far Gl - 1.06650  ogs BN,
This recembles the emptyr—po o ator rerna A

more than the

intensity poofile,

57

. AVCO!!

RV SN R S




a.02

i

GAIN

0.0!

-4
s
Q
Q
QU
J6079
Figure 24. Saturated Gain vrofile for ¢, = 1,065, ' ev RL.ROD,

The structure is canced by the local ditor ot ion
ripple of the right- and left-conna hooams,
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- Figure 34. Saturated Gain Profile for GOL = 1.065. Forf = 9.39.
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Figure 49. Effect of Saturable Gain on Mode Degeneracy. The

solid curve is a portion of Fiqure 12, representing
an "empty" resonator in the absence of gain satura-
tion.
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In a qualitative sense, saturable gain scems to producce
an effect not unlike that of mirrors with rounded cdges (27) or
tapered reflectivity, (28) which reduce the influence of diffrac-
tion on mode propertics. This is in spite of the fact that, as
we have seen, the intensity profiles themselves are nct really
smoothed on a fine scale.

Horwitz has pointed out that empty resonator mede deaen-
eracy occurs for Feffr's less that some critical value, with
that critical Feefe increasing quite rapidly as M approaches 1.
In other words, the propensity for mode dcgencracy is emphasized
for low Feoff and low M. We hypothesize that for cach value of
Fe and M corresponding to a mode degeneracy, there is also a
critical GiL which will 1ift that degeneracy. Though we have
not explored this thesis exhaustively, we have performed a num-
ber cf further calculations using GoL = 2. For M = 2.9 there
turn out to be no degeneracies for Feff > 2. When M is reduced
to 2.0, degenerate mode behavior is suppressed for Feff ~ 13.
For the empty resonator case, the corresponding critical Ferfg's
are 17 and 43, respectively.

This result is of considerable importance for device
design, as it frees F,off in many cases of intercst from beina
constrained to half-integer values, and, by inference, permits
a more relaxed view of resonator alignment tolerances.

In light of the present results, one is tempted to specu-
late how the mode structure of circular mirror resonators would
be affected by gain saturation. For such resonators, it has
been shown that, in the absence of galn, the in-phase diffrac-
tive contribution from the mirror perimetecr leads to strong
mode degeneracy, persisting well into what might be thought of
as the regime of geometric optics.(zg) It is certainly not
intuitive whether gain saturation could be expected to 1lift such
a strong degeneracy. Clearly this is an area which warrants
further study.

E. IMPLICATIONS FOR MMI

In an empty resonator, the pecak-to-pecak excursions in
the value of the g4 eiagenvalue are, in the region where mode
decgeneracy exists, about equal to the gdeometric optics limit
symmetric mode separation. (See Fiqure 12 or the figqures of
Refs. 14 and 16.) Since as Fgopg > ™y ‘g » 1 and Yoo~ 1/M.25,
This amounts to a fractional variation in the output coupling of

27. Santana, C., and Felsen, L., Appl. Opt. 17, pp. 2229-2243
(15 July 1978).

28. McAllister, G., ct al., 1EREF J. OQuant. Flect. QI-10,
pp. 346-355 (March 1974},

29. Butts, R., and Avizonis, P., J. Opt. Soc. Am. 62, pp. 10772~

1078 (August 1978). '
@
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2 2
Mg A9 = Ay o m (209)
L - M -1 M -1

which, for M = 2.9 is about 25%.(30) 1f saturable gain effects
are included, on the other hand this variaticn is clearly cut
at least in half, depending on the value of GolL.

Even though these results are derived for varving Fegs
with € = 0, we now present an argument that they apply equally
well to the varying-e case, with Fogr constant, because the
diffractive processes involved are essentially the same. (31)
Conslder the tilted resonator shown in Figure 50, with
€ o # 0. We want to consider two cffective Fresnel numbers,
derlved from the portion of the resonator on ecither side of the
optical axis:

ril =rl2 1+ 0)? (210a)
rlZl=rl0 - e)? (210b)
1f € is small compared to unity, then
Pl = pf0 (14 20 (211a) f
P20 = rl0) (1 - 2e) (211b) ;

Thus as & increases from zero, the two half- re%oni or Fresnel
numbers move in opposite directions away from F 95 In parti-~
cular, the output Couplings assocliated with each half{-resonator
follow the usual periodic curves, as_indicated in Fiqure 51, so
that when 2 ¢ F(9} s an integer, F{1) and r!2) are cach an

%) » eff ef f
integer away from FoffF-

30. The observation that the next-to-lowest-loss ciagenvalue has
a geometric optics asymptote of ~ MO+ 25 has not been noted
reviously, but is apparcnt from a closc cxamination of the
A vs Forg plots.

31. A more rigorous exposition of the contribnutina diffractive
effects of the two edges can be found in C.  Santana and
L. Felsen, Appl. Opt. 17, pp. 23%2-2357 (1 Auaqust 1978).
Curiously enough, t}mt, paper considers a {ixed nonzero tilt
(e) with varying Foepe, but docs not take up the complement-
ary casec, although the formalism for doing so is prescent,

d",r
(€S
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Figure 50. Tilted Resonator Nomenclature. The tick marks are
the centers of the mirrors, denoting the optical
axis when the resonator is untilted.
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Figure 51.

A4

8.3 9.3 10.3
EQUIVALENT FRESNEL NUMBER

Output Coupnling Variation in Tilted Resonators as
Derived from Two Half Resonators. Each vortion of
the resonator to either side of the optical axis
moves along the output coupling curve.
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As Justification for this argument, Figure 52 shows an
empty-resonator calculation of {}| vs tilt in units of 2 « (i),
for Fef% = ¢.,373 and M = 2.9. The validity of this way of look-
ing at tilted resonators can also be discerned from an examina-
tion of the mode patterns themseclves. In Figure 53 we comparc
an exact calculation of P(Q% = 9.3, M=1.9, 2 ¢ Feorf = 1 with
a composite formed by the left ha]f of a modc pattern for Ié%f
8.3, M = 1. 9,( = (0 juxtaposed with the right half of a modc
pattern for Fo?} =10.3, M= 1.9, ¢ = 0. The resemblance 1is
qguite closed indeed.
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2 4 6 8 1.0 1.2
NORMALIZED TILT

Modulus of Y vs Normalized Tilt for Vaee = 0, 3782,
of!

This 1is an cmxact calculation for a tilted reconato

but is approximated excoellently by the "half-
resonators"” as in I'igurc 51.
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SECTION VI

STABILITY ANALYSIS OF A SUPERSONIC CHEMICAL LASER

A. INTRODUCTION

The objective of this study is to develop an analytic medel
of the stability characteristics of a supersonic lascr; in parti-
cular that of a chemical laser. The flowfield and optical inhomo-
geneity of the chemical laser make it an extremely difficult
problem to analyze, and it becomes necessary to simplify the lascr
characteristics in order to obtain a first-order model of mode-
medium interaction inside the cavity.

The chemical laser generically consists of an array of flow
nozzles from which alternate lavers of fuel and oxidizcer arc
ejected (Figqure 54). This leads to a series of mixing and reac-
tion zones across the laser cavity. The subsonic laser, as
described previously, can couple to transverse acoustic waves and
result in instability. The supersonic lascer will generally not
have such a mechanism, as the lateral transit time, D/cg, is
much longer than the axial flow time 1/u, such that acoustic dis-
turbances will be swept out of the cavity (sce the glossary of
terms at the end of this section). For the purposes of this work
the flowfield is treated as becing one dimensional, and therefore
any coupling of disturbances in the flowfield to the lasing will
be primarily axial in form. This ignores the possible instability
mechanisms introduced by the series of planar mixing layers acting
as diffraction gratings or prisms which could then interact with
the laser flux. This mechanism is consicdered to be outside the
scope of the prescnt analysis.

B. MODEL ASSUMPTIONS

As stated above, our model treats the laser as if it has
a one-dimensional flowfield. This is obviously not true, but it
leads to an overall simplification of the problem that may none-
theless be rcasonably valid. The consoquence of mixing is to
reduce the overall rate of chemical reaction in the laser. Thus,
a reaction of the f{orm

is described by

dXC
—i= = Kk .pX, X
dt £V AR
where X denotes mass fraction, and ¢ is gas density.
J Y

ot
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Figure 54. Schematic of Laser Geometry
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Under turbulent mixing conditions the local values of the
concentrations [A] and [B] may vary subgtantially with time, and
their product more so. Although the dynamics of the mixing pro-
cess are very complicated, and many worrers have investiaated
such flowfields, it would appear feasible to use a simple model
to estimate the recaction rates for a quasi one-dimensional treat-
ment. In the model, the concentrations Xp, Xg of species A and
B (averagced over a plane normal to the flow dircction) are given
by their mass-averaged [low rates and an cffective rcaction rate
as follows:

dic
Fc o FeMa¥pe

where X is a mixing parametcr which is typically much less than
unity, and kgl is the effective reaction rate. The rate of
disappearance of fuel/oxidizer species can be related to a lasing
medium length in the flow direction. Thus for the LT laser, with
the D2 concentration significantly grecater than Fjp, we can write

X, = X, exp (-k.paX t)
F LO i DZ,O
where Xp, is the initial fluorine concentration. Thus, we have

an e—folSing time for disappearance of fuel given by

I S
k-pAX
f D2’O

The convective distance 2 traversed during this time is
thus given by

where U is the convective gas velocity. For a given mixing rate
we can thus relate the length of the lasing mecium in the flow
direction to the kinetic rate and the flow velocity, such that

u

B A= kfkoxnz'o

In the following we denote the effective recaction rate by
kg = KegA.

A chemically pumped DI lTaser exhibits multiline operation
such that lascr action can occur on an many as three vibrational
transitions and a total of 15-20 vibrational-rotational lines. (32)
32. Gross, R.W.F. and Spencer, D.J., "CW Hydrogen-Halide lLasers,"

Handbook of Chemical Tascers, R.W.F. Gross and J.F. Bott, eod.,
Wiley-Interscicence, Noew York, NY, 1976, Chapter 4.

=
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In order to accurately model such a system, the time evolution
of all lasing states and the flux for cach lasing transition
should be followed. This leads to a system of approximately
20-30 coupled differential equations which must be integratod
numcrically. Such a large set of equations is too cumberscnic to
be »f use for the present application; therefore, simplifying
assumptions must be made in order to provide a manageable Kine-
tics scheme.

The first assumption that we make is that three vibrational
levels are sufficient to model the behavior of the lasing species.
These levels are the upper lasing level, DIy, the lower lasing
level, DF1, and the vibrational ground state, DFg. We assume
each level is in rotational thermal eguilibrium.

In order to model the lasing action in the system, it is
assumed that the multiline operation of the DF lascr can be de-
scribed by a single transition from DFy to DFi. Implicit in this
assumption is the additional assumption that no lasing occurs to
the ground state of DF. This allows us to use a steady-state
approximation for describing the unperturbed lasing mcdium, since,
with this assumption, the ground state of DI, whose population
increases with time, is decoupled from the remaining kinetic
equations. Since only ~ 20% of the laser energy in a DF laser
arises from the v = 1 = v = 0 transition, (32,33) this assumption
is not unreasonable.

The reactions necessary to describe the DF laser are as
follows:

(i) Formation: X
F
u
+
F + D2 -> DFu D
k
Py
DFl + D

No ground-state DF is formed by this reaction.

(ii) peactivation: .

DFu + M - DFl + M

DF. + M - DF  + M
1 g

33, “NACL Provyram Final Report" (U), LTM=-292, TRW, July 8, 1976.
Classificd: CONFIDENTIAL.
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M is the combined dengsity of DF, D2, D and F; deactivation
by the carrier gas 1s assumed ncegligible.

(iii) Lasing:
g

DFu + hv - DF1 + 2 hv

Three-body recombination is assumed neglibible and only
single-quantum deactivations are considered. Estimates for the
formation and dcactivation-rate constants were obtained from the
recommended valuces of Cohen(34) by assuminag that the D2/F ratio
was 2-3 and 20~30% of the F atoms were reactced in the lasina
region. Our estimateced rate constants and the enthalpies for the
various recactions are listed in Table 1.

One more quantity is neccessary to model the behavior of
the lasing medium and that is the galn per unit length, which
can be written

= g_AN
g s v,
where cg is the stimulated emission cross scction and Ny, 5 is
the population inversion for the v,j-1 »+ v-1,j transition.
Writing this cquation in terms of the species discussed above
yields

g = o([DF,] - e[DF,])

where the brackets denote species concentration and ¢ is the
product of the stimulated emission cross section and the frac-
tion of the total DFy population which is in the lasing rotation-
al state. For a P-branch transition, = = exp (-2J3/Q), where Q

is the rotational partition function. Our cstimated values for

o and 0, obtained using the spectroscopic dita contained in Ref.
35, also are contained in Table 1.

Using the model discussed above, the time evolution of the
chemical species and laser flux in a cw DF laser is described
by the following equations:

34, Cohen, "A Bricef Review of Rate Coafficients for Reactions
in the D2-F) Chemical System,” TR-0074(4530)-9, Acrospace
Corp., January 1974.

35. Emanucl, G., "Numerical Modeling of Chemical Lasers,”
Handbook of Chemical lLasers, op. cit., Chapter 8.

-
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TABLE 1. CONSTANTS FOR SIMPLIFIED DF MODEL

Constant Best Estimate Probable Range Heat of heaction
kFu 8.3 x 10_12cm3/sec 5.9x10"l2—l.2x10"ll -7.3 kcal/mole
kFl 9.4 x 10_13cm3/sec 6.6){10_13—1.3):10-12 ~-23.4 kcal/mole
, 1.5 x 107 %cm3/sec 3.0x10713-4.5x10712 8.0 kcal/mole

Du

kpy 8.6 x 107 3cmd/sec  1.7x10713-2.6x1071%2 8.3 kcal/mole
g 5.0 x 107 em? 2.5x10718.2 5x10716 .

6 0.5 0.4 - 0.6 mee——
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R,
d[DFu] od
— = k. [F1(D,] - k, (DF 1(M] - §& ((OF ) - O[DF,])
dt u u
d[DFl] 01.‘1 -
= Xp [F1IDy) + kg [DF,TIND = K [DFy) )+ g (IDP1=2(0F 1)
d(DF ) :
—32- = x, [DF 1 (M] :
at 1
2 = cotor,) - 8lDF ¢

where ¢ is the speed of light, hv is the laser photon cnergy,
and ¢ is the intracavity flux.

C. ANALYTIC MODEL

The laser cavity may be described by a set of one-dimensional .
flow equations plus gain and flux cquation. The flowlield 1is
assumed to be inviscid. Thus the continuity equations are: '

Continuity 30, dlew) 4 212, §
9 Ix |
!
d 3 !
? u
Momentum o) 5% + puxy = - 3% (213)
Dh . ,
Enexec o= [K_, AH, + K. /\}1? JpX X. 4+ X AN n¥x. X (214)
JY Dt S S e SR P ., p, "M
+ K. AH_ pX X
D1 Dl m-l
where
D _ 2 A
pt = ot T Y oux
]
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In addition, the gasecs are assumed perfect giving
p = pRgT (215)

The reacting species may be represented by the three DF
states to give the species continuity equations

DX )
Upper State - 3 - - S (v < ay 216
pp Dt KF O\<F XH KD oxmxu h (Au Vhl) ( )
u 2 u
I state 1 0 (s X, ) (217)
J —_— = 3 + — : -— VA
ower State ot Rp oXpX, + Ky PX L%y h u 1
1 2 u
- KDlemxl
PXg
Ground State = K (218)
bt Bp PXpX)

1

The lasing may be described by the flux courling cqguation
described in Section I!1 and the gain cquation, such that

ad = .C__:l . ' ; [y LIS D%
Flux FT [meu dx + fagg dx~ ) (219)
; = 9o -
Gain 9 =5 : (Xu OXl) (220)
DF
The magnitudes of the coefficients in Eq. (219) are given
by

O Il

a, = 218 ——--

R Parm A

a. = 1.0

I

These cquations fully desceribe the Clow inside the cavity.
For the purposes of a stability analysic we are interested in
the perturbation of the flow from a steady-otate eandition.  Thuos
re~writing cach variable as the sum of

A osteady state and g flae-
tuating part (i.e., u = u + u') we

can derive portart ot ien o=
tions frem the above, nealocting higbher ordea Cormee a0 Cluet it i
quantities. For the purposos of this analysis 10 bBecomen nece oo
to consider the mean-value

Steady=ntate propeat con o the
variables to be constant throughisut thie

[ 1o

cavity.,  There 1o one

.

| 1.4
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exception to this case; the ground state mass fraction obviously
increases with time whereas the other equations have both source
and sink terms. The set of perturbation equations becomes:

Continuity

pel

!
ot

@2

+G.-‘_ +B._,._. = 0 (221)

o! au’!
Ix

Q

Momentum

O I P (222)

vo‘“

(223)

where Xiig and Xpo are the initial mass fractions of oxidizer and
fuel respectively.

State

p( - BRST' ‘+ ____3___ pr (224)
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Upper
DX'y _ X 1z 3 (X + X+ X))o’
= h) - + + X X .o =(X + X+ p
Dt l‘\.I(XHO Z(Xu xl g))( Fo u 1 g :
f
- 1 by v b ] 1 '
- Ky p(Xy g Xp ~(X F RyE R (X E X X g (225)
u o o
1)
) DX 1
Dt
Lower ’
DX 5
1 _ K, R : I
BT = Fp Xy X+ Xt xg)) (Xp =X+ X+ xg))o’ !
O O 14
S KL p(X, b X (R4 Rk R (X4 X'+ X' )
Fl HO 2 Fo u 1 g u 1
iy [] r - r
+ Ky (X F X )e' + Ky op X X' (226)
u u
+ o [(S'( - 6)'( Yo'+ —(X' _6” 4 I.{‘-_l.njz_ru
hv u )¢ ¢ G TOXT = T ]
- v [ = ol ‘
KDl(xmxl)p Kp 0¥ %' |
1 |
Ground {
{
DX’ ax i
Dt Dl[xmxlO + me X l] 40k ( )
Gain
, o _ - - _ -[_\;-1(_" o
97 M [(ku_ le)p * OXIu h fvxll L (228)
DF T
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Flux

O [fXaprdx + fSaLgtax) (229)
L o R o I

As we are considering supersonic flow, we nced to only con-
sider the flowfield downstream of the nozzle bank; thus a Laplace
Transform treatment appears tractable. We apply a double trans-
form in both space and time; i.e.,

-st

£(s,k) = /7" e e F¥f (£, x)dxat

This producecs a set of linear equations from the above
partial differential ones. Thus Egs. (221)-(229) give

Continuity (s + uk) p + p ku = 0 (230)
Momentum p(s + uk)u + kp = 0 (231)
Energz
1 - _ - -
-{IK, aH_ + K_ AH. 1{x,. - % (X + X+ X ) Hx_ -(X + X,+ X))}
Fu Fu Fl Ll Ho 2 u 1 g ko u 1 g

- ]_ ~
+ + + -
{K AH Ky OH 1 X xllx }Cp o
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State
2
cS - - - - 23))
= p+p R_T - =0 (233
” p P g P
Species
Upper
State
— l - - - — - -
“K_ pX_ - (X 4+ X+ X)), —(X + X+ X ))p
2 o 1
Fl H u 1 g F u 1 g

F F o u 1 g u
(234)
- - 1 - >
+{ (s+uk) + + = -(X + X,+
[( ) Kp o(xF 7 Xg ( u 1 xg))]\il
u (@] O
PR DX, by —(R o+ X+ X ) )%
F H o 2°F u 1 g
u (@] O
Lower
State
ptd>o L - _ _ _ ) .
- - = + + - + - Lo 1e
[Kp X, = ZKo& X8 X Ixp =Xk Xt X0 g KR m Ky, XXy e
1 o u 1
+ (K B(xF + %—xI-(iu+ X+ ig)) - RPN T ﬁ% ¢ 2
1 o ) Du
R ~ (235)
h\)(Xu GXl) ¢
- 1 - - - - a -- -
+ b3 { ot - . T ;\ Y
( rlp(yn 5 Xp TXGE X X)) {sruk) v p de v R, US|
o} e} 1
+1% 7 20
T
PR PN 4 Ex. —(Ro+ R4 X)) X
Py H 2°F u 1 g g
O O
Ground
State
-(s+2uﬁ)ﬁ)lxmxlﬁ - KDle( M uk A uk (mdun) hg = 0. (230)
Uh
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Uy —
Gain
- R - 0N+ op X = T
' u
Fp u 1
Flux
< N
st = gy tog 0ot gl/k

Fliminating u from Eqgs. (230) and
(237) and (238) we obtain

Continuijty-Homentun

(s + Gk)z p - k2p

Gain-Flux

~C~§ la + a_o(X - 9X )](: + ;-(—:—:’1

2L R I 1 2L

- Cl -~ ~ ch o X198 1n

. ——l ~ 0 -
g 5T uIFV Xl + g 51, 1 - .
T
J = A

where o J/ADF.

The scven equations in variables,
can be written in matrix form

(A] [x] = ©

K

()—' ‘o f lll('

= B (237)

0 (238)

(231) and ¢ from BEugs.
J Y

=0 (239)
L ? X - }’\c)
oo (240)
T = 0
14 TI P G XU’ Xl’ \W
(241)
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Thus wc have

Transformed Egquations

a 0 0 0 0 .1 -
11 alS C116 0 o] 1‘ 0
1 RSPy -ks “24 Urs 0 0 L |
| 2 -
(S+Gk)2 0 0 0 0 } 0 ' ¢ ‘1
i .
b
- ) 1
{ 041 (142 0 Ct44 (s+uk) 5146}( 47 ‘ | Xl ‘
k b
- P~
E Ocq ‘a52 O3 a54+(s+uk) a55 0 a57 | ; T i
oy a o, (sHUK) O agr(stuk) 0 0 agy §| p |
. N !
- 0 2 (s+uk E
a7l(s+2uk) 1] 0 a74uk . 0 ukls uk)‘ Xg 2 |
JL |
(242)
where
2
CS -
@)y = =y7r O35 = PRy aye = ol «
_ch (% - o% _gce =
ayy = 5y [ept a0 X = 0%, ay) 2 “rf ‘
< 0X.861nd ii
= - 'E-?- Boo = _C_L“ o _____} it
%pq = T 7L “1%°0 0 a5 T Cpo2p ¢ TG 1
|
1 1,= . = , = - -
a = - ={{r. An, + K, oan, 1{X - (X 4 Ry XX, - (X X+ X))
41 5 Iu Fu 1 ry Hy 2 7 1 g F, u 1 q
FlK. AN + K An. VX o+ X+ X IX )
Dy u Dy Dy u 1 g m
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— — __6_, A S $ - (X X + S{ )}
Ay, = Oy, = (ke s+ KL o J i vy X R X
42 44 p F Fooo Ty F{oH F, g
(k. au. + K. Ay X )
i b, D DDy M
o - 1 1 Z.+ % .. (K. AN
46 = pc a = V. 4w X X+ X+ X ) HIB SR A 1
P 47 p Hy Fo u T1lTg FooFav by
= - R S SN AP T .3
%51 = [KFl (XH (Xu+ At Xg)) (XFO (agt *y Xt ) mu V‘D;\mhl]
Qen = K, p(X + Ly (X o+ X+ X )-K. 0 X i
52 Fy H 2 °°F u 1 79 D m hv
O O O
- _ 9 (% - B%
agy = T Ry KyT 9%p)
_ ~ 1 (T S 5 ado -
Yoy = Kp P(Xy o Xp (Xt Xy R R X
1 o o 1
a - - ¢ 61nd
55 hv 5
oo, = K. p(X +Ex -(@ o+ X 4R
57 F H 2°7F u L g
] © o
I Sl %o %4 %) ~(R+ o+ ¥
agy = =~ Kp P (X, = 7 (K& %+ xg)) T Xg))
u [@] (8]
- . l —
= = = K X L X, -
Gy = %eq = %g7 T Rk Py T 7wy (Xt Xyt X))
agp = ~Kp XX a gy = o Kp Xgp
1 1
‘ 4
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The stability of the system can be examined in terms of the

characteristic equation derived from Bg. (241); i.c.,
det[A} =0 (243)

An analysis stability of the system is obtained from the
Routh criterion for Eq. (243).(36)

The characteristic cquation may be obtained {rom Bq. (242).
After tedious algebra this reduces to

7 6 . 5 4 3 2 1, _
a;s’ + ags’ + acs + a,s + a5s + a,s +oags 4 ag 0 (244)
where
¢:7=1\6
a6 = 6nA6 + AS
a, = 15n2A + SnA. + A, + B
5 6 g 4 5
a, = 200 A, + 10n%A. + 4nA, + A. + SnB. 4 B
4 LY 1 fg Ny 3 7 20Pg 4
ay = 150°n_ + 10070 + 6nA, + 3nA. 4 AL+ 1002B. 4+ dnp. 4
3 6 5 4 1B 3 2 noBg nhy F OBy
- 5 4 3 2 3
a, = 6n A6 + 51 AS + 4n A4 + 3n A3 + 2nA2 + Al + 10n B5
2
+ 6n B4 + 3nB3 + B2
_ 6 5 4 3 2
al =1 A6 + n AS + n A4 + n A3 + n Aa + nAl + AO
4 3 2
+ 5n BS + 4n B4 + 3n B3 + ZUBZ + Bl
_ 5 4 3 2
ao =7 BS + n 84 + n 83 + n 82 + nBl + BO

36. Distefano, J.J., Stubberud, A.R., Williamg, 1.J., "Feedback
and Control Systews," McGraw-liill (1967).
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and
AG = —alen
A, = o, .Q k2n -0, 0, KN +a (o - Yk
5 15746 16%62 16 Y52 T Ggg/Rn
.
By = ajgagy (ay, = ay,)n

_ 3 _ 2 o
g By = mapkin - aggagelag, = ag0kn tagcags (ag, = ag,)kn
g tay gag ey 4kn
| .
By = agylayy = aygdnl-oggo, ¢k + ag,]

- 3 _ . 2,
Ay = apkinllogy = aggl)-ug,l+ajgacagqaqg, ki
+o, -a, 0 k3 - QA,-0 nk3 +o, A0, ~0n K
15%47%71 15741 16%57%62%74™7

kn kn

TO16%47%55% 745N TH16%52%2% 74

2 .
3 = @130g3{ayy =0y 0k N+ apga cag e, (g, —ay ) kn

T%16%25%47%53% 740 TH16%22%53%¢ 274"
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~ 3 3 3
2 = 0330 agy T ag kTN ¥ g0,k

2 3
H0 50, Og 7060 kTN + Ay g0 pa50,,K

) 3 3 3
)50 y9077 (Agy = Gg )k + aygo, 0y kTN oy ga a0,k
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The valuce of the spatial wavenumber, k, is taken to be
given by the cavity dimension in the flow direcction, . Thus,

Ke 1/9%

Thus, =«we can now numerically specify all the coefficients of the
characteristic cquation.
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D. STABILITY ANALYSIS OF DI’ LASER MODEL

The values of the laser parameters can be obtained from
the "gain ecquals loss" condition and Egs. (216) and (220). The
"gain equals loss"” condition specifies the gain in terms of cav-
ity loss and cavity length such that

2gL _

e =r; r,

where r1 and r) arc the mirror reflectivities. Thus we obtain
the population density of upper and lower states from

(Xu - 521) = g/SB

The flux can be obtained from Eg. (216) where we assume

6;(u -3 T 00 ,3o
ot = 0 % Kp pXp Xy -5 (X - 0Xy)
u o 2,
-2 -
Thus ¢ = KF 5 XF XD ochv/ (0g)
u o) 2,0

Using these criteria, the parameters for a wide range of
flow conditions were investigated. The laser conditions arc
listed in Table 2. Over the entire range of mixing rates, flow
velocities, cavity lengths and pressures, use of the Routh cri-
terion specifies that the laser is stable. This can be simply
described by reference to the coefficients of Eq. (244). The
only matrix coefficient containing contribution from «r (the
density fluctuation induced flux variation) is n1p] which appears
in cocfficients By and Bg; these affect only coefficients aj and
ag. In general, By and Bg are significantly smaller than the
other terms in aj and ag, resulting in both a] and ap being posi-
tive (if either of these coefficients werc negative an unstable
root would occur).

The response of the laser to upstream-induced noise dis-
turbances may be described in terms of transfer functions derived
from

(A [x] = (F]

where [F] is the forcing function vector. The transfer function
between paramcter xpy and F 1s given by

%, B doL(AF]

Fn dot [A)
where [Ap) is the matrix [A] with the nth column replaced by (1],
L

“{b . CAVCO L v i T




1

i

e

13333535 R RRRERN

TABLE 2. LASER CONDITIONS INVESTIGATE

Cavity length (L) 0.1 -~ 3.0 m
Mixing length 2 1.0 - 10.0 cms

3 . 3 x 103 m/sec

Flow velocity 10
Cavity pressure 1 - 10 torr

Cavity density 5 x 10_4 - 5x 10—3 kg/m
Laser mix 10 He/5 D2/0.8 Fy
M = 5.45

Yy = 1.59

Mirror Reflectivities

ry = 0.98 r, = 0.88

4t

D
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The response of such a system is thus choaracterized by
1/det[A]. The normalized magnitudes of this function are illus-
trated in Figure 55. The response is cosentially uniforma up to
frequencies of 10% rad/scc, and thercaltor raprdly docroaces in
magnitude with a slope asymptoting to -/, The response reduces
in magnitude as cavity pressure is increasnd.

Obviously, this 1s only part of the overall transfer func-
tion, and further analysis is nccessary if the detailed system
response is to be determined.

E. DETA1LED SYSTEM RLSPONSE

The model developed here is a simplification of the real
laser behavior. A more detailed and correspondinaly divficule
approach is required if the full three-dimensional natiare of tin
mode medium interaction is to be investigated. From the previous
analysis a simple acoustic or gain fluctuation inst:bility doos
not appcar to occur in the chemical lascr. However, thoe roa!
flowfield may result in other significant mechonisms occuring.

The chemical lascr consists of o scries of ruasi-planar
flame sheects (Figure 54). The jets from the nourle Lannk areo
normally in the transition range of Laminar to turba!
where laminar instabilitics of the flumesheet are aps
These instabilities are akin to the Raylolah-Tovlor inocabilat
in mixing layers (see for example, Kimura(37) and Toong. (38)
Fluctuations in the local gain and flow provertiecs will recult
in modulation of lascr output flux. Whether such a flowficid
instablity can lead to an output instability is not clecar. The
coupling between the array of mixing lavers is of importance;
if the flowficld is driven by an upstrceam acoustic disturbance
which is identical for all the shear layers, this mayv resualt in
significant optical coupling. Howoever, a randem phacing of
oscillation of the array of flame shceots may result in a quite
different behavior.

F. SUMMARY
A simplificd model of a supersonic chemical laoer e baoy

derived and a stability analysis performed. This indicate: thot
the laser is stable wicross a wide range of oporating conditions,

37. Kimura, I., Tenth Syoposium (Int.) on Combustion, p. 12ah-
1300, The Combustion Institute (1965).

38. Toong, T.Y., Silant, R.V., Stopford, J.M., Andoroon, .Y,
Tenth Symposiun (Int.) on Combustion, p. 1301-1513, The
Combustion Institute (1965),

42

AVCO i




- 1.0 P=1 TORR
W
" 10 |- —]
pd
O
| 5
wn
L P=3 TORR
14
|| "
(@)
, o T
i 1078 —
3
} Q
| =
' 1=
w
>
2
-3
21077 = .0 TORR —
| w
| (1
L=1METER
X =1cM
| U = 3000M/SEC
-4 \ |
' 10,03 104 105 106
ANGULAR FREQUENCY (RADS/SEC)
J6756 )
:; Figurce 55. Frequency Response unction
o
CINAVCD CvEnrTT




w n

| www

1237232333333 3

Howcver, the simplifying assweptions remov.e the pocsilility of

a coupling occurring as a concscguence of {lame-sheot fustabilicy
and as such would not appecar in the solutions obtained in this
work.

The akove analysis provides a uscful starting point in
obtaining a description of possible mode-medium interactions in
supersonic miving lasers. However, 1t is far from compleote and
it is recommended that further cxploration of the possible be-
havior of flamc-sheet instabilitics upon opticual performance is
necessary.

G. GLOSSARY OF TERMS

a coefficients in bqg. (244)
A cocfficients in Eq. (244)
B coefficients in Eq. (244)
c speed of light

Cg sound speed

cp specific heat

g gain

n enthalpy

k space transform variable
k kinetic rate coefficient
K effective rate cocfficient (= ik)
1 mixing length scale

L cavity length

MDF moleccular masg

r mirror reflectivities

p Gas pressureo

u gas veloclity

t time

TAVIO N R




P

PATM

AH

al

time transform variable
temperature

axial coordinate

flux coupling coefficient in Eq.
cocfficient in matrix Eq. (242)
Gladstone Dale Constant

ratio of specific heats
degencracy coefficient

mixing parameter

laser wavelength

gas donsity

density at a pressure of 1 atm
lasing cross section
intracavity flux

reaction time constant

mass fraction

enthalpy of reaction

O/MDF

Subscripts

u

1

upper state
lower state
ground state
formation rate

deactivation raote

(219)

AVCO ¢ v T




Eazat lnmmmeysriIIN e

SECTION VI

SUGGESTIONS IF'OR FUTURE RESEARCH

The dynamic models considercd in Sections 11, 1V and VI have
made simplifying assumptions on +he nature of the lasor cavic

In particular, uniform values of gain, donsity and fiux have
assuncd 1n the cavity. More quantitative results may bo obtaln.a
by perturbing the actual steady-state modes.

AR R T S
DA I

The theory contained in Scctions II-IV, and VI of this ro-
port deals not only with possible system instabilitics, but aloo
in the system transfer functions. Accordingly statictics of tle
system output can be predicted if external porturbations can be
modeled. In particular, it would be usciul to molol the turbu-
lent nature of the nonuniform flow {lcld of tho flcwing Tz
Once the correlation (or distribution) function of th
(i.e., rcefractive index) function 1is Known, the statisit
the noise driver are known. The theory o: this report th

allows, via the transfer function, the calculation of the sto-
tistics of the laser flumx ocutput. In addition, theo metheds o

the theory of light propagation throuch turbuleonce can bo uscd
to find the statisitics of waveo-firont distortion of the outnu
wave. This problem 1is especcially acute for the chemitcal lase
where the imperfect mixing of the reactant casces can be modeolod
to predict the statistics of tho system inhomogoneitles.

Moot o\ ~* R R N N R I SR AR R ~ - -
L N T ~ T e Ny N e, R

calculating the soli-consistont modes o7 o soiuratdd, o
resonator. This is in fact the only reavonably fact teoohnique
that we know of for making such a calculation. Although we have
only applied it tc a strip-resonator ceometlry, 1t arpoars to bhe
generalizable to a circular gcometry ag woll. Culeulations of
this type can be used, for cxample, to Jotermiine the courling
between modes and the modification of the outpyut coupling of in-
dividual modes induced by an external porturbation.  Woe

that this technique will find wide-ranging applications to laosers
resonator problems in the future.

- Y
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APPENDIX A

THE PERTURBED RESONATOR

In this appendix we will treat the perturbation cxpancion
of Section II somawhat more rigorously, thercoby clarifyina the
physical meaning of the acoustically induced pQrLurb4tion of the
electromagnetic wave in the resonator.

Writing the part of the electromagnetic wave which propagatos
to the right as

> i(k VAME t)
E(x,t) = u(x,t) e © ° + c.c. (1-1)

we find that u satisfies

->

-> > >
ulx,t + TO) = fK{x,x',t) ul{x',t) dx' (A=2)

where K = K + Ky; K is the unperturbed provasator (L.o., the
propagator in thé absence of the acoustic wavel); Ky is the per-
turbation due to fluctuations in the density (acoustic wave) and
gain of the medium (sec Section II1); X and =' represent (vector)
positions in an x-y plane between the mirrors; and ', = 2L/c is
the round-trip time. 1In the following we write x to denote

X = (x,y).

The time dependence in K, is due to an acoustjc7osci]laticn
whose frequency is very low coiipared to 1/1O T 5 x 10/ sec~l. This
means that

axl

. - ¢ _3
a3t o U % (A=3)
and we therefore may zonstruct an cquation for du/it (x,t) as
follows:

du ~ 1 o ] _ - - 4 r A ! !
erl e fulx,t + zo) uix,t)] i [.VO(.\,.» ) u(x',t) dx
© (A-3)
+ fVl(x,x',t) u{x',t) dx']

¢ 4
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where
. i i . ] — S L] -5
VO € - (ko(x,x ) S(x~-x")} {A-5)
o
and
\% = L (x,x',t) (A-6)
1 T, 1 e

Equation (A-4) has been written in a form which makes it
identical with the Schrodinger eguation. Thus, we may solve this
equation by the well known perturbation-~theory techniques used in
quantum mechanics.

The integral operator Vo represents an unperturbed, time-
independent "Hamiltonian” of the system, while Vy is t.ae perturba-
“tion. To celculate the bechavior of ul{x,t) (analogous to the wave
function of guantum mechanics) we may expand u(x,t} ~ any complete
set {Yp(x)} of space-depcndent functions:

u(x,t) =:z: an(t) ?n (x) | (A-7)

As the set {Wn} we choose the eigenfunctions of the unpertiurbed
Hamiltonian Vgoe SO that

' = d Wy . . 1 -
An%n(x) . Vo(x,x ) ,n(x') dx (A-8)

i.e., ¥, is the eigenfunction of eigenvalue *
may be shown to be equivalent to

n Equation (A-8)

Wn(x) = (1 + iAnTO) / Ko(x,x') ?n(x‘) dx’ (A-9)

or, for [ 71 _l<< 1

-1iA T
e MOy (x) =7 K {x,x")% (x') dx' (A-10)
n o n

)
&
N
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which is the usual integral form of the cigenvalue cquation of
a laser resonator. Tt will be shown below that the natural optical
frequency of mode n is

w_ = w_ + Re A
n o n

i.e., Re ) represents the frequency offset of mode n from that
of the purc longitudinal mode of frequency 4. On the other hund,
-2 ImA, represents the fractional energy loss per sccond of mede n.

Substituting Egs. (A-7) and (A-8) into Eg. (A-4) gives

. da
. j;: [Eéﬂ + ik a ]Tm(x) :ZEZ a, (£) [V Gox', 08 (k') dx'

m m m
m

We now assume that the modes {¥,} form a complete ortho- :
normal sct. This assumption could be rigorously justified if :
the unperturbed Hamiltonian Vo were Hermitian; the oigenvalue
Ap would then be real, corresponding to an unperturbed cavity
in which all modes have the same value of net loss (loss minus
yain}. This will clearly not be the situation in an actual un-
stable resonator. lowever, the only modos which are interesting
are the initially oscillating mode and those modes whose net losses
are nearly equal to that of this initial mode; othor modes (with
significantly higher net losses) will be stronagly damped and will
therefore never be excited by the acoustic coupling. Thus, it
should be a good approximation to assume that for the modes of
interest

Iml_ =0 (A-12)

and therefore

* Y = ¢ -
J ‘i’n ‘1m dx 5nm (A-13)

Equation {A-12) implics that multimode oscillation is jpossible

in our wmodel laser. 1In fact, such multimode behavior has boon
obscerved in ow LEDI Luswrsn(lj Multiplying both oides of Fag.o (A=-11)
by T,*(x) and integrating over all x then yields, with the aid of
Eq. (A-13)

1. R. Patrick, AERIL, private communication.
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dan E :
—_— 1Xnan = - = Nnm(t) am(t) (A-14)

where

= gk [y . ' g ' sl ? -
an(t) If &n (x) Vl(x,x ,t) %m(x ) dxdx (A~-15)

It will be noted that no use has been made so far of perturbation
theory; within the limits of our assumption that the modes of in-
terest are orthonormal Eq. (A-14) is cxact.

The mecaning of Eq. (A-14) may be clucidated by first ex-
amining its solution in the absencce of the perturbation (i.e.,
with Wpp = 0). We then find that each amplitude a,, satisfics

—_ = - l)\ (A‘lG)

a
nn

with the solution

-ix_t
n

a, = an(O)e (A-17)

so that the clectromagnetic wave propagating to the right in the
cavity is, from Egs. (A-1) and (A~7)

ik z=w t)
E({x,t) =Zan(0) e © ‘i’n(x) + c.c (A-18)

IR}

where W the natural frequency of mode n, is given by

W= w_ + ke(r ) = w_ + A {A~19)
n o n o n
This is clearly what once would cxpect: cach mode which is
present initially {(at t = 0) continues (o oscillate frecly at 1tsg

natrual frequency. Because we have not allowed for any dampineg,
none of these modes decays with time; since we have not allowed
for any coupling between them, they do not affect one another,
cither.

o
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Consider  the divect effect of the perturbation on an init-
ially oscillating mode. We denote the initial mode by the sub-
script 0, and take i, = 0, (This iIs cquivalent to detininag |
to be the frequency of the initial mode.)  irst-ordor pertori b on
theory allows us to iagnore the amplitudes of «ll the other node:s

to a first approximation. We thus have, from Eqg. (A-14)

da
__ 0

at

= - 1W_ (L) a (A=-20)

The real part of Yoo (defincd in Iy (A=15)) correspontic
to a shift in the frequency of the initial mod., wibile the 1m-
aginary part corresponds to a change in the not cavity loss (o
gain) per unit time of this mode. Such o lens chan o could conre
about as a standing transverse acountic wave oscillat. s in ampli-
tude; we would then cxpect the cavity lnss to be medulated at
twice the freguency of the acoustic wave. Loss medulation of th
type is, in fact, used to mode leck lacers, Tt ocould in prineiy v
lead to an instability if the initial mode 15 not aniform in int. o.-
sity within the cavity, since the heating ascociated with the covaty
loss modulation is then nonuniform anl can croite an ccoustic dio-
turbance. Indeed, our calculations i the modeo of an uanet ol
resonator (Section V) show explicitly that o nonunitoorm mode prton-
sity distribution is to be cxpeocted, so this is a poscible candi-
date for an acoustic instability.

Let us now consider the effect of the acoustic porturbaition
on the other modes of the cavity. Again, we may asoune to tint
order that the amplitude a, of the initial mode is rmuch laroano
than that of any other mode. We may thus ignore al) amplitudes
am other than agy on the right of Eqg. (A-14), and seot T
unity. This approximation is, of crurse, only zolf o noict.ot
as long as the eguaticns predict thas ’3nf w1l oy o2l o A0
i.e., in the initial stages of any buildup of other cavity modos
The a,'s then satisfy

n .
- + 1l a = - iW t 1 (t) (A-21)
dt n“n o (8} ag
It is uscful at this point to conaider two Ly of ruder, !
which wo label N and M for definitencos. Mol N obo doaenorat. g
frequency with the initially present mode (0 - 0), while e b X

, ‘ o N
is offsct in frequency by an amount A 00 The mode amplitude s
satis{y
da

- - 1w -2
at 1 Wyt (h-ae)

ISY

AVICO ¢ v 1




da

Mo . .
Mo, a4 = - i A-23)
at "oy 1oy (H) (

Associated with a,, will bce the perturbation in the field,
a (t)TN(x), which we denote by ul(x,t). It 15 scen imunedlately
t hat uy satistices

Ju

ooy = s AN _
= (0t) = - i (e Y () (A-24) 1

The perturbation WN (t) will generally oscillate at an
acoustic irequeqcy “pr SO Eq. (A-24) prp@;cts that uy; will
oscillate at this frequency as well. This mans that the per-~
turbation in the actual field E will oscillate at Yo Y onas oven
though the cavity mode being excited would oscillate naturally i
(i.c., in the absence of the perturbatior) at the freguency . 1
(since it is degenerate in froquency with the initially precent
mode) . This result is expected: the mode N is in a state of j
forced oscillation, and it oscillates at the driven froguency it
U.‘O + U.\A.

Equation (A-24) is in the form of the starting cquation $eov
the flux perturbaticn in our treatment in Soction L1, Tt is thus 1
ccen that this treatment pertains (o the flax dictar
with the buildup of a cavity mode whoono unportirihod freoaency 1o
degenerate with that of the initial mode. W Co1n Section 17

that this buildup does indeed lecad to an instability.

Lance associatod

On the othcr hand, we now consider the buildup of a mode
of type M, satisfyin~ Eq. (h-23). Since Ve, 0rcillates at
frequency v, BEq. (A-23) prodicts that the buildup of apy will
be resonantly enhanced when

(A-24)

Wo show 1n Seoctien IV thar $re Laldun of worode of thiis i
type can also lead to an instability, at least in the low-fluence
limit, .

Finally, we comment on the probability
moden which are degenerate or nearly decgener o
kHHz in LDL experiments) . Becauase of the aae
density varies with position in the upstrean-downotr o direcs-
tion. The nonuniformity joolics that the droore Tenortudinal
mode froqucencies are not cwell e finecl, andd ot chion b ot curprine
us to find a containmun of ponsible cigenfroaguw neien Tor suchoa
realist e lacer cavity. 7

findinag cavity
(.. /0 10-20

W, U he EDL aag

oo result, o o cloon byt e
or ncarly degeneryate modes appears to be e . O the other
hand, calculatines the moodoes of such o Joaded conator 1o not em-

pected to Lo an cany tann,

-
/)S’ .OAVEQ v b 1
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APPENDIX B

PROPERTIES O DEGENERATE MODES AND CONDITIONS
FOR THIIR REINFORCEMENT

We wish to derive scveral results stated without proof in
Section II.

First, we calculate the conditions under which two resonator
modes may be degenerate in their cigen{reqguencies. Consider for
simplicity light modes contained in a box of lencth L and width W,
The eigenfrequrencies Von (measurcd in cm™1) satisiy

m 2 n 211/2
e [ 6

where m and n are integers. For Yo m/2L >> n/2W wo may writo
this as
2
~ 1 n .
vV = \V + e -2
mn mo 2v 2W (B=2)
mo
In der for v t a ) nust satis
i order r Vp-1,0 to equ 1 Vip 7 must sati fy
2
1 1 n
—_ = - -
2L T 2% i (B-3)
o
i.e.,
2
4y
- «AL (B-4)
-1 . - .
where X = Vo is the wavelength of the Tight,

Equation B-4 suqggests an inteoor noon the ordey of 10 will
permit the froquency 'y ©f a trancverce mode to be deaenorate
with that of a lonqitud;nal mode.  For example, let W - 5 om,

L = 400 cm, and X = 107> cm. We obtain

n = 16, (1=

o>
/5,6 . AVCO vt
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From this valuce we may also determine the number n' of
transverse oscillations which are to be cxpected in an acoustic
wave of wave vector k; which satisfics the phasc-natching con-
dition '

e o

PR -

km—l,O A km,n (B-6)

For an acoustic mode contained in the transverse dinension of
the idealized resonator of this appendix we then have

21 M
k, = +4— = —-— (B~7)
A AA
so that
n' = n/2 =~ 8. (B-8)

This is, of coursc, only a qualitative result, meant to
indicatec the approximite number of fringes to be cexpected.  If
the approximate conditions of the model (uniform steady state
properties for flux density and gain) were rigorcousiy true, n?
would have to be a intcger to match the acoustic boundary condi-
tions at the walls. In the actual casc kEg. (B-8) 1is only
approximate.

Next we show that the wave scattered by the phase gratina
(standing acoustic wave) produces a {lux perturbation of the
same shape as the acoustic wave.

The theory of scattering of light by an acoustic wave
(Debye-Scars) predicts scattered or diffracted waves at angles
of

{(B-9)

with renpect to the initial wave. These waves, at least for a
confocal unstable resonator, will after one round trip, return

The interference betweoen thesoe waves and the unpoertar bod
waves will be of the form

ikl kq X —ikl k] ¥
* - 9 N 28
uo Ul + Ui s} ( . 1 e i

= cos kX
a

[

if vy hos the same unperturbed fregueney (1oes, 30 k) ) oan
the oriqginal wave.  The siturtion 1o 1l taorated an Figure b=l

alié
/S7 AVEO i

(B3-10)
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Figure B-1.

Tllustration

the point O
mirrors. Th
plane but at

The retan waves aflter one ronnd trip w0 YD thon b

in the same

of the Peprolducibility of the Scattoered
Wave. The unperturbed wave focuses (virtualle) at

n
¢

slightly displaced points A and A'.

d

the commoen focal plane of the two
scat tored waves also focus In this

rection as the oritginal ccattorod seee,

|SY

TAVCO NV e 1T



Finally, we justify our assertion that the density pertur-
propagation dircection. 1f
P10 has, an fact, a
factor cxp 1(kz - .ot)

bation is independent of z, the light
in the notation of Scction I1 ul, and hence
different k, than o, then, aftor the common
is factored out, ¢j1p can be written

TZ
~ coslk. x - =% B-11
©1£ [ a L] ( ) :
. . . . . . p
Now the gain and heating ecquations will be inconsistent unless
gi1¢ and ¢1p have this same additional z behavior. However, sincs
the thickness of the medium is of the order of half the scparacion :
of the mirrors (or less) in a typical case, the z-variation will !
be insufficient to cancel out the effects ¢f the mode-medium intor-
action and we are justified in neglecting it.
1
A
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APPENDPTY O

In this appendix, we prescent a semi-heuristic justifica=-
tion for Eg. (60) of ‘'he text,

Let us assume tho heatino 1s one dimensional (flow dirvrec-

tion) and uniform in the reaion (= b/2) © x ~ (b/2). In this
case, Fourler and Lavlace transforming Eg. (57) leads to

- 2{(y - 1) F](S) ¥ogin kK

NS T

) (C-l)

pylk,s) = 2
(s + ivk) [(s + ivk)® + C k)

where Fp(s) represents the temporal histore of the heatine and
we have used the F-transform of a step functicn.  Then, by con-
tour intcgration we obtain

_sh _ sb ol R
2v 2c ' 2

s c b v/c
B _ (=1) Fs) | L AT
pl (x=0,s) = 5 Qo e cosi Ve 25
c “s < v
s 1=— :
Cq

Expanding about s = 0 we find that tihe first two terms in the
brackets are the same as the expansion of

B e L ko (C-3) ‘
_ 2 ;

Q |
where 2
A S
Cq C_

vy = —~———;v——-;2— (C--4)
+ _— -_ —_——
1 2
S lof
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and
\7
1 -
L2
2v Cq
v. R\ — ——
2 §) v v
+ - .
1 [of Z
S o

We may arrive at a result similar to Eg. (C-3) by
substitution

For v/cS ~ 0.5, we have

1
‘

1<

s + 1.25

u

time)“l.

D

r

AN

In tho text we have taken, somewhat arbitrary s + v/b os
damping term on intuitive grounds for all values of v/iog,
we expect the convective damping to be of the order of

AVCO

tho

(C-9)

(C-6)

(C-7)
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APPENDIN D

RESONATORS

1.  EMPTY RESONATQOR (STABLLE)

There are many ways in which the ceqguaticns satisficed by
the eigenfunctions of an enpty, stable resonator can bie formu-
lated. In this appendix a derivation baced on classical poten-
tial theory will be prescnted, since that provides the most lucid
extension to the analysis to be presented later on.

The steady-state wave equation for a transverse cloctro-
magnetic ”avS (Helmaoltz cquaticn) is given by JZ2E 4+ k4B = 0
where k2 = o 1s the wave frequency, ¢ 1s the specd of
light and E is the Laplace—-transformed transvorec Lenant orf
the electric fiecld. The solution to this ecquation can be writton
in terms of the Huygens-Fresnel-Kirchhoff integral by neans of
Green's identities (1)

. B
1 e 5
E(x zZ) = E — = G —-}dAi D-1
1Yz AT s on in ’ ( )
A
where G is the appropriate Green's function, A is the area of
interest, Eg and vLP/<n arce the electric field and its normal
derivative on the surface res pectively., Thus, once the field
and its normal derivatives on the bounding surfaces are alven,
the field ecverywhere can be determined. This approach has the

disadvantage that it requires the specification of both the
electric field and its normal derivative on the surface. 1In
general, either the function or its normal derivative will be
spcc1flod. These are the Dirichlet and Neoumann boundary con-
ditions, respectively. Note that mixced conditions are allowed
where Dirichlet is specified cver part of the bounding surface
and Neumann over the rest of it but not both at the same time
over the same surface.  Thus, it 1S neCessary to reformulate
the solution in terims of so called dipeole and sinaglet charqge
distribution. For the Dirichlet problem this implies that ()

(1) Born, M. and VWolf, E., Principlcs of Optics, Porgamon

Press, NY (1959). H
(2) Mikhlin, §.G., Integral BEouation:, Peraamon Press, NY
(1957) .
i

T s I um—
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. 1 , R
E{x,y,z) = i vfu(x ) — G(x,x') dAa (h-2)
A
and the dipole layer ;1 satisfics
- aG
E =u + .[\‘ﬁﬁ dA (D-3)

where E is the value of the electric field on the boundary, n
is the normal direction, A is the surface areca and G is the ap-
propriate Green's function for the problem at hand. For three-
dimensional problems it is

G(x,x') = eih'r (D-4)
r

Consider applying this procedure to the stable rosonator
shown in Figure D-1 which consists of the two mirrors with un-
equal radii of curvature scparated by a distance D. In the
Fox~Li calcualtions for the stable resonator only the ficids on
the mirrors are determined, that is only 1 is solved for. Since
fields on the mirrors vanish Eg. (D-3) reduces to

j ; elksll .f \ Olkslz
uy o+ i + Uy o= ——— = 0 (D-5)
1 1 Bnll S11 2 an21 512
Ml M2
\ e1kS21 . e1k522
U, + Wy =— &S 4 o =0 (D-6)
2 j 1 8n21 521 -f 2 dn22 822
Ml M2

where uj, uy, M1, M2 are the dipole layers and minor arcas of
mirrors 1, 2, respectively; Sy, S11, Sy are the distances o=
tween the mirrors including curvature terns and the distoancons
of different points on the same mirror. Writing the first two
terms in Bag. (D-6) as 71 u1 and the first and last term in b,
(D-6) as y2 u2 these eqguations can be rewritten as

1k512

= A e T -
YiHy F f“z T O (b=7)

ot 2

cr
[63
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Figure D-1. Empty Stable Resonator
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5 OlKS21
Y2U2 + My :ﬁm— =0 (h-8)

) 21 521
1

Substituting Eq. (D-8) into (D-7) results in the conventional
integral equations for the Fox-Li preblem. (3) In order to solve
these equations the paraxial approximation is made, that is, the
term proportional to $-2 in Egs. (D-7) and (D-8) is negleccted.
The question of what happens when thie resonator is loaded will
now be addressed.

TR T

2. LOADED RESONATOR (STABLE)

The Maxwell equationsg appropriate to the loaded resonator

are,
V-e E=-9Y-P (D-9)
O
v.E=o0 (D-10) {
CE o= - 4B -
VxE-=-%? (D-11)
VxH=e 5+ oy (D~12)

where it has been assumed that there are no {ree-charge currents
flowing, but the medium responds to clectromagnetic waves through
the polarization term.

Equations (D-9) and (D-1V) can be combined into a single
wave equation,

.2 2
2 LN Aop - Lyv.oow (D-13)
2 O 4

t2 e}

For transversce clectromagnetic waves the Jast term vanishes.
The polarization term is assumcd to be given by

(3) Fox, A.G., Li, T., Bcl) Syst. Tech. J 40, 453 (1961).

P
16S
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Bo=e, (0 + o) (b=14)

where x 1s the complex diclectric susceptibility. Tts form in
terms of more fundamental guantitics 1o given in Aps. ndix B,
Substituting Eg. (D-14) into the Laplace transtform of by. (D-17)
results in

-

vz'}f+k2 E =0 (h-15)
where
2 2 Oy
o v ;L . -
k® = > (1 X + ixg + i ) (D=-16)
c 5

where ¢, denotes a phenomenological loss torm duc to output
coupling from the resonator (;: < 0 for lasina medium). The
solution to Eq. (D-16} can be written in the same form as

Eq. (D-1). However, since again only the ficld or the normal
derivative would normally be specified it 1 noeocessary to re-
cast the problem in termse of one for the sinclcet or doublet
charge layers. However becausce of the amplification by the
medium it is now necessary to calculate the fields boetween the
mirrors as well. The only differcnce in the doublet cauation
{Eg. [D~3]) would be that the Green's function has a arcwing
{decaying) part to it because of the complex values of k.

Hence special attention has to be paid to the converconce prop-
ertics of the various functions if cquations of the form of Egs.,
(D-7) and (D-8) arec to be derived. Most of the difficultics are
swept into finding the appropriate Green's function.

At this point an alternative prcocedure could bhe usced.
This is the method of multiple scaling. This tecknigue 16
used to essentially eliminate the rapid variation in the 720
direction {(dircction normal to the mirrors) from the cquations.,
To implcment this the fields are assumcd to have ¢f777 varia-
tions in the 2 direction. Substitutinag this farm into bHg. (D-=15)
and averaging over the fast variation roecults in

v 2 E + 2ik il E + k'2 E = - 3 12 B~ 1.y o B (b-17)
T ’ z az : R S o or
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where

el Cli (- 18)

v

2 . :
T 1s the transverse Laplaclan orcrator.

=T

The solution to Egq. (D-17) can in principle be found by

X the following procoedurc:
= —_ —e— - 7t 21 ] - B ~ P | _1¢
E(r) 1 c2 XyT o dwngtn a’r BE{r') G(r,r") (D=-19)

(for a homogencous medium) and G satisfics,

3 e
VT2 G + 2ik - G4 k'2G = & (F=1') (D=20)

oz

Note that E and G have to ke found in the intire roaion Letwe.n
the mirrors, not just on the mirrors themnelves as bl boen the
case for the empty reconator.

Even assuming that the Green's function can e found
Egq. (D-19) is still an integral couuation which b o be
solved, either numerically or in a perturbot:on oo (Porn
appproximationj. Solving the coupled ot of e, 0 =19) and
(D-20) 1s more akin to a scattering caleulaticon tioo, it i«
using the Grecn's theorem of the previous oot icn.

3. LOADED RESONATOR (UNSTABLL)

The unstable resonator ic even more corplic:oodi. Pilauroe
D-2 illustratrs why this is the case.  The woere iy (D=17) ot 00
applies. However, 1t has to be solved an o nand oy of peepona
the solutions have to be matched acroces the booneia: bono b)) b -

gion 1 contains both a right-qoing and o lort-goirne: oave,  oaion
IT containg only a riqgiht-qoing wave with coan,  Feorlon 115 con-
tains a right going weve but with no o anin (g 0). In the
analysis where the caurtions are colood in il e voons,

¢ 7 0 becausne the Tors 1s caleculated oy bty o T paraose iun

for colving 1y, (D=17) 15 to arcune o rpctd —aodn s oY iy b
wave and a left-going Ssphericeal wave on Booaron b, to annune only
a cylindrical wave with difterent propoceatpon constants an
Regimes IT and 111, and then matohing tho wave coluations acyoas
the different bhoundayryes, Thae, the field in Region 1odo aiven
by (tor the lowost-order mod)

(4)  FMoore, GUT. and MeCarthy, Rod., 0 Opt, Soc., AM
(1977).
P

, 67, 228
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Figure D~2. Confocal Unstable Resonator
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where f and G arc to be determined. The boundary
on the two mirrors lead to

flo,r) = 0 F d
-y = Gid,r/d)
f(D,r) d
where the magnification is given by M = (D + d)/d
tudinal mode number, k., = nu/D. Substituting Eg.
(D-17) lecads to
2
ot vt g
% 21k 2
2
v
aG I S ¢
ap Pk T2 f

where Vo2 is the transverse laplacian in cylindric
coordinates in the two cquations and « = -(.2/k . 2¢
gain. Fquations (D-24), and (D=25) were solved by
McCarthy {4) using an assumnd gain profile.  The so
gain profile is given by the Rigrod cqguation,

V. gV = -9 - ?

wvhere Vois the flow velocity of the medium o, 15 0t
time, ©, ¢4 arc the optical and saturation ]

ing rate. Since « ~E7 this implies that the crquat
ficlds {(D=-24), (D-25}] are coupled throuth the «
Since the two fields are deseribed oo ditderent o
tems, this make s the self-consietont poroblon pongs
plex. A complete numerical analysio ol thene Bgn,
and (D-26) 1is desceribed in Section V.

@
(69

uslodn

(h-21)
condition E = O

(D-22)

(D-23)

and th~ lonai=-
(D-21) into

(D-~24)

a1 and spherical
o] . . . . -
“tK.v i is the
Mooro and

lf-concistoent

(I)_?(i)

e derctivat 1on
doP o the poange-
vons for the

din b, (D=26).

o bin te na-
cular vy oo
(h-24), (D=24)
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In the integral formulation of the mode-mediwn instabilit:s
the solution to the equilibriwum j ’

prebloem is written as ug @ K u der
where KO 1s the appropriate iHuygens-i'resnel operator.
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APPENDIX L

DERIVATION OF THE POLARIZATION TLRM

in the simple approach taken here the olectrons are treated
B

semiclassically.  Since the medium treated 1s o Lenoity aas
the clectric field seen by the individusl nwo

as the ecxternal ficld. (In a denser medium Tike a solid the ¢effoc-
tive ficld would be Ferf = E + IP/3 where iPis the polarization
shielding.) (1)

Yhe sames

Thus individual electrons obey the following equation,
X 4+ /X + . X - - B E-1 ¥
! B n ( ) 4
where v, up are the dampina (crowth) rot e, the arbital hinding
frequency and & 1s the stimulating olvoctrie f1celds solving B,
(E-1) leads to

where c-c is the complex conjugate. The dipole nmoment of the
molecule is given by

p = -ex (E=-3)

Finally the macroscopic polari-otion for a denuity of N moleculo s
per cubic centimeter is give.

S Neoex i
|
or
—imot (
(2 Be
M r
N R P EPE B-4)
m ( 7 2 ; (
o ‘B "o
The effects of a spatially varying wave are ancelnlo boin g camabar ;

fashion. The Fourier transformed polarvization b ool aned aniegi-
nary parts given by,

1. Panofsky, W.K.H., Phillipe, Mo, Claiead Ploctyaeity o

Magne tism, Aaddison-Wesloy, Macs. (10U ).
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5 2 2

{) - .

Ne¢™ "o B -

D T e e el B ST
Bkr m i I‘k (E=-5)

2 'YVA.

= - Nel o oe
Pyi= m TR Pk (E-6)

where R = (12 - wp2)2 + y2u02. Thus the real part modifies tho

index of refracticn while the imaginary part produces stimulated
emission of absorption depending upon the population inversion.
In Section IV I is written as follows:

= onrE + e, %y E (E-~7)

Comparing Eg. (E-7) with Egs. (E-5) and (E-6) lcads to

2w 2 w 2
. - _.Ne” o "B i
Xy € m R (1= 8)
X = - N.?E _Y.:Q (l‘_())
1 € m R o
o

o

Tn addition IPwas defined In terms of . Faquantions (U-8) and
(E-9) give a simple definition of the freguency dependonce of o«

In the semiclassical treatmoent arowth (stimulated (mission)
is obtained by letting 7 be ncgative. (2) In additicon, the effcots
of saturation enter v by making it amplitule depondent.  Thus a
relationship between the semiclassical treatmoent and the gquantum
treotment i1s obtained by ldentifying o3 with the gain of the
medium,  The gain is given by

2
mo
g=- 22 Noljko (E-10)
Kk
lo}
Hence
N 2
L S © SN AT .
g n:. 2 2 R ”ko (B-11)
e} }:O C

Finally this allows the polarization to be written in torms of
the gains as,

2. Yariv, A., Quantou Blectronien s Tohn Wil oy Do Y (1anTY) .




P, = cap NE, - it — -5 g0 By (1-12)

This result is derived on the basis of assunina that N and g
remained constant over the time period of interest. The generali-
zation allows both of these to change and is treatoed in Scction
IV. Note that even in equilibrium g is allowed to vary boecause

of saturation dependence on the fields. That is v depends on the
fields, but ag is assumecd to have a weak dependence on the ficelds
at Lest. For single frequency electric ficlds the polarization

in real space and time is given by

P(r,t) = Il’k+ H‘k* (E~13)

where TPk is given by Eq. (E-12). For more complicated electric
fields the Fourier-Laplace inversion of Lg. (E-12) has to be per-
formed. This leads to a convolution integral of the form,

IP(r,t)=-[dr'dt' x(r',t') E(r-r',t-t") (E~14)

where X is given by Egs. (E-8) and (E-9).
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